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Abstract

A prisoner’s dilemma game is said to be impure if there are indepen-
dent mixed strategies that provide both players a higher payoff than does
mutual cooperation. The phenomenon of impurity has important impli-
cations for the application of game theory to normative disciplines. This
paper outlines a calculation (best performed by machine) that provides a
full (if unwieldy) characterization of the space of outcomes in any impure
prisoner’s dilemma and applies this result to a simple example. Outcomes
with particularly desirable properties are identified and described. The
paper concludes with an examination of the extent to which the idea of
impurity can be carried over to games other than the prisoner’s dilemma.

1 Introduction: Pure and Impure Games

In [4], [3] and [2] a prisoner’s dilemma is labelled impure if there are independent
mixed strategies that are pareto superior to mutual cooperation. For example,
figure 1 below gives the payoff matrix for a prisoner’s dilemma game when the
sucker, punishment, reward, and temptation payoffs for each player are 0, 1,
3 and 7. A simple calculation reveals that, if each player employs a strategy
of 90% cooperation then each gets an expected payoff of 3.07, which is slightly
better than the three units each gets by certain cooperation.

C D
C 3,3 0,7
D 7,0 1,1

Figure 1: An Impure Prisoner’s Dilemma

This phenomenon would seem to be of great significance for the often ex-
pressed hope that game theory might provide a rigorous foundation (or at least

∗Thanks to Donald Saari for insightful conversations and suggestions that made this paper
possible.
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an important tool) for moral philosophy. Conflict and congruence of interest
and advantage is, after all, a central concern of moral philosophy and game
theory is the theoretical discipline that aims to study conflict and congruence of
interest. The prisoner’s dilemma, in particular, has been said to illustrate how
moral rules allow individuals to achieve advantages that selfish behavior pre-
cludes, and thus to suggest to suggest the senses in which the old question ”why
should I be moral?” can and cannot be answered. 1 Viewed in this light, the
impure prisoner’s dilemma shows that, unless moral rules sometimes require
randomized choice, individuals who do not consistently follow such rules can
achieve even greater mutual advantage than those who do consistently follow
them. Thus the pure/impure distinction would seem to play an important role
in applications of game theory to moral philosophy and impure games would
seem to provide an key test for such applications.

From this perspective, several questions about the pure/impure distinction
are of particular interest. One wants to know, first of all, the conditions under
which impure versions of the prisoner’s dilemma occur. This question is an-
swered in [4], where it is established that a prisoner’s dilemma is impure if and
only if the following simple condition condition is satisfied.

I) (Tx −Rx)(Ty −Ry) > (Rx − Sx)(Ry − Sy)

where Si,Ri, and Ti are the sucker, reward and temptation payoffs for player
i = x, y.

One also wants to know generally what payoffs are achievable in an impure
dilemma and what outcomes might be considered desirable ”solutions” to the
games in view of these payoffs. These latter questions are not resolved in the
earlier literature and they turn out to have to have answers that are much less
simple. Finally, one wants to know the extent to which the idea of impurity is a
general concept that extends to games other than the prisoner’s dilemma. This
paper continues the investigation of impure games begun in [4], [3], and [2] by
addressing these central questions. Section two provides a full characterization
of the space of payoffs attainable by independent mixing in the impure prisoner’s
dilemma. The characterizing equation is not easily readable, but its general
form is discernable and it yields simple formulas for particular games. Section
three briefly examines some plausible solutions for impure prisoner’s dilemmas.
Section four begins an investigation of the extent to which the idea of impurity
extends to games other than the prisoner’s dilemma.

2 Characterization of Payoff Space

The space we wish to characterize is illustrated in figure 1 below. The x and
y axes represent the payoffs to players x and y. The dark lines trace a concave
quadrilateral. The four vertices are the payoffs to the pure strategy outcomes
in an impure prisoner’s dilemma, i.e., the payoffs to (C, D), (C, C), (D, C), and

1See, for example,[1].
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Figure 2: Feasible Payoffs for the Impure PD

(D,D), clockwise beginning at the top left. (The notation (X,Y) here represents
the outcome in which player x plays X and player y plays Y.) The edges of the
quadrilateral are the points attainable when one player mixes and the other plays
a pure strategy. The southwest edge, for example, connecting the payoffs for
(C, D) and (D, D), comprises the payoffs when y plays D and x mixes between C
and D. Similarly, the edge between (C,C) and (D, C) comprises the payoffs when
y plays C and x mixes. A line which joins these two lines 1/4 of the way between
their tops (where x plays C)and bottoms (where x plays D) comprises all the
payoffs for outcomes in which x plays the (.75,.25) mix of C and D. Thus, the
crossing interior lines occupy the space where both players mix. The fact that
the northeast vertex of the quadrilateral is contained within this region indicates
that the game is impure. We can see that the region is bounded by the edges
of the quadrilateral on the southwest and southeast. The northeast boundary
is a concave curve comprised of three segments. Near the top and bottom,
the curve coincides with the boundaries of the underlying quadrilateral. Near
the middle, the curve bends slightly to the northeast of the quadrilateral. The
region northeast of the (C,C) payoff bounded by the concave curve represents
the mixing advantage, i.e., the payoffs that both players prefer to what they get
by mutual cooperation. The portion of this region along the curve represents
the optimal mixing advantage.

A more precise characterization of the space of feasible payoffs requires two
pieces of information:

• the coordinates of the two points where the optimal mixing advantage
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begins to depart from the boundaries of the quadrilateral

• the equation for the middle, non-linear section of the optimal mixing curve.

The second part of the task is attempted first. We describe a procedure for
obtaining an equation representing the optimal mixing advantage. Neither the
procedure nor the equation it yields is simple. The reader may wish to use a
computer, as the author did, to verify the steps. 2The complexity of the pro-
cedure and the fact that a computer program was used in calculating the steps
involved might weaken confidence in the results. For this reason we also describe
and implement an alternative method of calculating the mixing advantage. The
observation that both methods lead to the same equation lends credibility to
the results.

For every q, 0 ≤ q ≤ 1, let us call the line representing all the points where y
plays the (q, 1− q) mix of cooperation and defection a q-line. The first method
is that of intersecting q-lines. For i = x, y let Si, Pi, Ri and Ti be the sucker,
punishment, reward and temptation payoffs to player i. Then the line segment
from (C, C) to (C,D) comprises the points:

(qRx + qSx, qRy + qTy)

for 0 ≤ q ≤ 1. (q indicates the probability with which y cooperates and q is
1− q.) Similarly, the line from (D, C) to (D, D) comprises the points:

(qTx + qPx, qSy + qPy)

For each q q, 0 ≤ q ≤ 1, the q-line is the line segment connecting the coordinates
described by these two expressions. The equation of the line containing this
segment is given by

y − (qSy + qPy)
x− (qTx + qPx)

=
(qSy + qPy)− (qRy + qTy)
(qTx + qPx)− (qRx + qSx)

Solving for y,
(1)

y = 1
Px(q−1)+Sx+q(Rx−Sx−Tx) (Px(q−1)(qRy +Ty−qTy)+q(qRxSy +

SxSy − qSxSy − qRyTx + (q − 1)TxTy) + (q(Ry − Sy − Ty) + Ty)x +
Py(q − 1)(−Sx + q(Sx −Rx) + x))

The equation for the the nearby (q+∆q)-line can be found similarly. By solving
the two equations simultaneously, we obtain the coordinates of the intersection
of the q-line and the (q + ∆q)-line. In particular,

x = 1
((Rx−Tx)(Py−Ty)−(Px−Sx)(Ry−Sy)) (Pyq2R2

x+2PyqRxSx−2Pyq2RxSx+
PyS2

x−2PyqS2
x+Pyq2S2

x−q2R2
xSy−2qRxSxSy+2q2RxSxSy−S2

xSy+

2Computations were done with Mathematica, making frequent use of the ”FullSimplify”
command
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2qS2
xSy − q2S2

xSy −Pyq2RxTx + q2RxRyTx−PySxTx + Pyq2SxTx +
2qRySxTx−q2RySxTx +q2RxSyTx−q2SxSyTx−q2RyT 2

x +∆q(Sx +
q(Rx−Sx−Tx))((Rx−Sx)(Py−Sy)+Tx(Ry−Ty))+Tx(Sx−2qSx +
q2(−Rx+Sx+Tx))Ty+P 2

x (q−1)(∆q+q−1)(Ty−Ry)+Px(−q2RxRy+
Py(q−1)(∆q+q−1)(Rx−Sx)+RySx−2qRySx+q2RySx+2qRxSy−
q2RxSy+SxSy−2qSxSy+q2SxSy−2qRyTx+2q2RyTx+(q−1)(Rx+
qRx + Sx− qSx− 2qTx)Ty +∆q((Rx−Sx)Sy −Ry(Sx +Tx)+ (Sx +
Tx)Ty+q(RySx+SxSy+2RyTx−Rx(Ry+Sy−Ty)−(Sx+2Tx)Ty))))

As ∆q approaches zero, the intersection of the q- and (q + ∆q)-lines approach
the curve of interest to us. At the limit,

lim∆q→0 x = 1
(Px−Sx)(Ry−Sy)−(Rx−Tx)(Py−Ty) (−Py(q(Rx−Sx)+Sx)2+

q2R2
xSy + 2qRxSxSy − 2q2RxSxSy + S2

xSy − 2qS2
xSy + q2S2

xSy −
q2RxRyTx − 2qRySxTx + q2RySxTx + Py(q2(Rx − Sx) + Sx)Tx −
q2RxSyTx + q2SxSyTx + q2RyT 2

x + P 2
x (q − 1)2(Ry − Ty)− Tx(Sx −

2qSx + q2(Sx − Rx + Tx))Ty + Px(Py(q − 1)2(Sx − Rx) − Sx(Ry +
Sy)+(Rx +Sx)Ty + q2(−SxSy−Ry(Sx +2Tx)+Rx(Ry +Sy−Ty)+
SxTy + 2TxTy) + 2q(−RxSy + SxSy + Ry(Sx + Tx)− (Sx + Tx)Ty)))

This expression gives the x-coordinate of a point on the curve. It defines x
as a function of q, which is one-one while 0 ≤ q ≤ 1. The inverse is given by

q = 1
Px+Rx−Sx−Tx

(Px − Sx + 1
(Rx−Sx)(Py−Sy)−(Px−Tx)(Ry−Ty)√−(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√

(Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty)√
PxRx − SxTx + (−Px −Rx + Sx + Tx)x)

Substituting for q in equation 1 and simplifying gives the equation for y as a
function of x that was sought.

(2)

y = 1
(Px+Rx−Sx−Tx)2 (PyR2

x + P 2
xRy − PyRxSx − RxSxSy + S2

xSy −
PyRxTx + 2PySxTx + 2RySxTx − SxSyTx − RxTxTy − SxTxTy +
T 2

xTy − Px(PyRx + RySx + SxSy + RyTx + TxTy + Rx(Ry − 2(Sy +
Ty)))+Px(Py +Ry−Sy−Ty)x+(Rx−Sx−Tx)(Py +Ry−Sy−Ty)x−
2
√−(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(PxRx − SxTx + (−Px −Rx + Sx + Tx)x))

Let us say y = m(x) for short. When we set the payoffs to Sx = Sy = 0, Px =
Py = 1, Rx = Ry = 3, Tx = Ty = 7, (as was done in the illustrative graph
above), the equation for the curve is given by:

y = x + 16
1
3
− 4

2
3
√

3 + 3x

The second method for finding our equation is to compute the highest q-line
at a given x. Consider the equation for an arbitrary q-line given in 1 above. To
find the value of q at which y is maximum for a given x, we set ∂y

∂q = 0:

5



1
(Px(q−1)+Sx+q(Rx−Sx−Tx))2 ((Px(q−1)+Sx+q(Rx−Sx−Tx))(−PxRy+
2qRxSy + SxSy − 2qSxSy − 2qRyTx − TxTy + 2qTxTy + 2Px(q(Ry −
Ty)+Ty)− (−Ry +Sy +Ty)x+Py(Rx−2qRx +2(−1+ q)Sx +x))−
(Px +Rx−Sx−Tx)(Px(q− 1)(qRy +Ty − qTy)+ q(qRxSy +SxSy −
qSxSy − qRyTx + (q − 1)TxTy) + (q(Ry − Sy − Ty) + Ty)x + Py(q −
1)(−Sx + q(−Rx + Sx) + x))) = 0

Solving for q,

q = 1
Px+Rx−Sx−Tx

(Px − Sx + 1
(Rx−Sx)(Py−Sy)−(Px−Tx)(Ry−Ty)√−(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√

(Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty)√
PxRx − SxTx + (−Px −Rx + Sx + Tx)x)

This is the same expression for q that was obtained by the method of inter-
secting q-lines above. Substituting for q in equation 1, then, will produce the
same equation for y as a function of x as before.

This equation coincides with the northeast frontier of the space of feasible
solutions only in its middle portion. If the nearby q-lines that figure in the
first method intersect only after they cross the ((C,C), (C,D)) boundary their
intersection will not be among the feasible solutions. Similarly, if the highest
q-line at a given x is below the ((C, C), (C,D)) boundary at x, that line will not
extend the solution space beyond the original quadrilateral. To calculate the
points at which the the curve departs from the boundaries of the quadrilateral,
we need only find the points of intersection of that curve with left and right
segments of the northeast boundary of the quadrilateral. The left segment
segment is the line segment between (C,C) and (D, C). The line containing
this segment is given by

y −Ry

x−Rx
=

Ry − Ty

Rx − Sx

Solving for y,

y =
RySx −RxTy −Ryx + Tyx

Sx −Rx
.

In the case of our example,

y = 7− 4
3
x.

By solving this equation and m(x) simultaneously, we can obtain the coordinates
of the point at which left segment of the northeast frontier joins the middle
segment. The x coordinate of this point turns out to be:

xleft = 1
PyRx−PxRy−PySx−RxSy+SxSy+RyTx+PxTy−TxTy

(PyR2
x−PxRxRy−

PyRxSx +RxRySx−RyS2
x−RxSxSy +S2

xSy +RySxTx +PxRxTy−
R2

xTy + RxSxTy − SxTxTy),

which, in our example, becomes

xleft = 2.
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Similarly, the line containing the right segment has the equation

y =
RxSy −RyTx + Ryx− Syx

Rx − Tx
,

which, in our example, becomes

y = 5
1
4
− 3

4
x,

and the x-coordinate of the point at which the middle segment of the northeast
frontier joins the right segment is

xright = 1
(Px−Sx)(Ry−Sy)−(Rx−Tx)(Py−Ty) (PxRx(Ry − Sy) + R2

xSy −
RxRyTx−RySxTx−RxSyTx + SxSyTx + RyT 2

x + PyRx(Tx−Rx) +
(Rx − Tx)TxTy),

which, in our example, becomes

xright = 4
1
3
.

Thus in our example the northeast frontier of the feasible outcomes is described
by

y =





7− 4
3x if 0 ≤ x < 2;

x + 16 1
3 − 4 2

3

√
3 + 3x if 2 ≤ x ≤ 41

3 ;
5 1

4 − 3
4x if 4 1

3 < x ≤ 7.

Figure 2 below, shows a plot of this equation together with a plot of the
other two boundaries. This yields a picture of the space of all feasible outcomes
that can be compared with the original picture of figure 2 above.

3 Notable Outcomes

In the symmetric case, where Sx = Sy, Px = Py, Rx = Ry and Tx = Ty, the
payoffs to x and y are the same when they each employ the same probability of
cooperation. In particular the payoff for cooperating with probability p is given
by

π(i) = p2Ri + ppSi + ppTi + p2Pi (3)

The probability of cooperation that maximizes the payoffs of both players, is
obtained by setting d(π)

dp = 0, i.e.,

2(p− 1)Px + Sx + 2p(Tx − Sx − Tx) + Tx = 0.

Solving for p,

p =
2Px − Sx − Tx

2(Px + Rx − Sx − Tx)

In the case of our original example, the maximum payoff is reached when play-
ers cooperate with probability 5

6 . It seems reasonable to suppose that in this
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Figure 3: Feasible Solutions by Equation

case the players would agree to have that level of cooperation enforced. (Since
this is a prisoner’s dilemma, of course, they still have incentive to defect more
frequently in the absence of enforcement.)

In asymmetric cases, it may happen that the probability of cooperation
that maximizes the payoff to x may differ from the probability of cooperation
that maximizes the payoff to y. In this case, it seems appropriate to relax the
requirement that both players adopt the same level of cooperation. A solution
that is of particular interest is one in which the mixing advantage is shared
equally. This point lies on the intersection of the line with slope one through the
point (Rx, Ry) and the optimal mixing advantage curve described by equation
2. The equation for the slope-one line is given by:

π(y) = π(x) + Ry −Rx,

Solving this equations and 2 simultaneously produces two ordered pairs (x1, y1)
and (x2, y2), where

(4)

x1 = 1
(Px−Py+Rx−Ry−Sx+Sy−Tx+Ty)2 (P 2

xRx +P 2
y Rx +R3

x− 2R2
xRy +

RxR2
y−2R2

xSx+3RxRySx−R2
ySx+RxS2

x−RyS2
x+R2

xSy−RxRySy−
2RxSxSy + S2

xSy + SxS2
y − 2R2

xTx + 3RxRyTx −R2
yTx + 2RxSxTx −

RxSyTx +RySyTx−SxSyTx +RxT 2
x −RyT 2

x +(R2
x +RySx−SxSy−

(Sx + Sy)Tx + T 2
x −Rx(Ry + Sx − 2Sy + 2Tx))Ty + TxT 2

y −
2
√

(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))
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√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)+

Py(−SxSy+2SxTx+Ry(Sx+Tx)−TxTy−Rx(Sy+Ty))+Px(−2PyRx+
2R2

x + 2R2
y + RySx− 2RySy −SxSy + RyTx− (2Ry − 2Sy + Tx)Ty +

Rx(−4Ry − 2Sx + 3Sy − 2Tx + 3Ty)))

y1 = 1
(Px−Py+Rx−Ry−Sx+Sy−Tx+Ty)2 (P 2

xRy +P 2
y Ry +R3

y−PxRySx +
R2

ySx−2R2
ySy−PxSxSy−2RySxSy+S2

xSy+RyS2
y+SxS2

y−PxRyTx+
R2

yTx + 2RySxTx−RySyTx−SxSyTx + R2
x(Ry −Sy − Ty)− (2R2

y +
(−2Px+Sx)Sy+(Px+Sx+Sy)Tx−T 2

x +Ry(Sx−2Sy+2Tx))Ty+(Ry+
Tx)T 2

y−2
√

(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)+

Rx(−2R2
y + Sy(Px − Sy + Tx) − Ry(Sx − 3Sy + Tx − 3Ty) + (Px +

Sx)Ty − T 2
y ) + Py(2R2

x − 2PxRy + 2R2
y + 3RySx − 2RySy − SxSy +

3RyTx +2SxTx− (2Ry +Tx)Ty +Rx(−4Ry−2Sx +Sy−2Tx +Ty)))

x2 = 1
(Px−Py+Rx−Ry−Sx+Sy−Tx+Ty)2 (P 2

xRx +P 2
y Rx +R3

x− 2R2
xRy +

RxR2
y−2R2

xSx+3RxRySx−R2
ySx+RxS2

x−RyS2
x+R2

xSy−RxRySy−
2RxSxSy + S2

xSy + SxS2
y − 2R2

xTx + 3RxRyTx −R2
yTx + 2RxSxTx −

RxSyTx +RySyTx−SxSyTx +RxT 2
x −RyT 2

x +(R2
x +RySx−SxSy−

(Sx + Sy)Tx + T 2
x −Rx(Ry + Sx − 2Sy + 2Tx))Ty + TxT 2

y +
2
√

(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)+

Py(−SxSy+2SxTx+Ry(Sx+Tx)−TxTy−Rx(Sy+Ty))+Px(−2PyRx+
2R2

x + 2R2
y + RySx− 2RySy −SxSy + RyTx− (2Ry − 2Sy + Tx)Ty +

Rx(−4Ry − 2Sx + 3Sy − 2Tx + 3Ty)))

y2 = 1
(Px−Py+Rx−Ry−Sx+Sy−Tx+Ty)2 (P 2

xRy +P 2
y Ry +R3

y−PxRySx +
R2

ySx−2R2
ySy−PxSxSy−2RySxSy+S2

xSy+RyS2
y+SxS2

y−PxRyTx+
R2

yTx + 2RySxTx−RySyTx−SxSyTx + R2
x(Ry −Sy − Ty)− (2R2

y +
(−2Px+Sx)Sy+(Px+Sx+Sy)Tx−T 2

x +Ry(Sx−2Sy+2Tx))Ty+(Ry+
Tx)T 2

y +2
√

(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)+

Rx(−2R2
y + Sy(Px − Sy + Tx) − Ry(Sx − 3Sy + Tx − 3Ty) + (Px +

Sx)Ty − T 2
y ) + Py(2R2

x − 2PxRy + 2R2
y + 3RySx − 2RySy − SxSy +

3RyTx +2SxTx− (2Ry +Tx)Ty +Rx(−4Ry−2Sx +Sy−2Tx +Ty)))

To find the probabilities of cooperation that x and y must employ to achieve
these payoffs, observe that the payoffs to x and y when x cooperates with
probability p and y cooperates with probability q are given by

π(x) = pqRx + pqSx + pqTx + pqPx and

π(y) = pqRy + pqTy + pqSy + pqPy.

Solving x1 = π(x) and y1 = π(y) simultaneously, we obtain
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p = 1
(−(Px−Sx)(Ry−Sy)+(Rx−Tx)(Py−Ty))(Px−Py+Rx−Ry−Sx+Sy−Tx+Ty) ((Px−

Py + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty)) +√
(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)),

q = 1
Px−Py+Rx−Ry−Sx+Sy−Tx+Ty

(Px−Py−Sx+Ty− 1
−(Rx−Sx)(Py−Sy)+(Px−Tx)(Ry−Ty)√

(Rx −Ry + Sy − Tx)(−(Px − Sx)(Ry − Sy) + (Rx − Tx)(Py − Ty))√
((Rx − Sx)(Py − Sy)− (Px − Tx)(Ry − Ty))(Rx −Ry − Sx + Ty)

For example, if the payoffs for x are 0,1,3 and 7, as in the original example, and
those for y are .5,2,4 and 9, then this solution calls for x and y to cooperate
with probabilities 80.5% and 81.5%, respectively, giving them payoffs of 3.12
and 4.12. Each gets the same .12 advantage from mixing.

4 Impurity in Other Games

In an impure prisoner’s dilemma there is a mixed strategy pair that affords both
players a higher expected payoff than the ”natural” or ”desirable” outcome of
(C, C). A similar phenomenon can occur with other games. Consider, for
example, the three games with matrices below. (The moves have been labelled
C and D for ease of comparison with the prisoner’s dilemma.)

C D
C 3,3 2,7
D 7,2 0,0

C D
C 0,0 2,7
D 7,2 3,3

C D
C 0,0 2,7
D 7,2 1,1

Figure 4: Three Impure Games

Note that the first two games are distinct in the sense that neither can be
obtained from the other by merely relabelling players or moves. Nevertheless
the diagrams of the two games (in the sense that the quadrilateral of figure 1 is
the diagram of the prisoner’s dilemma of our earlier example) are the same, and
they are similar to the diagrams of the third game and the impure prisoner’s
dilemma. The first game is a version of Chicken, in which C and D are Dove
and Hawk, respectively. The third game can be regarded as a version of Luce
and Raiffa’s Battle of the Sexes where, for each player, to play C is to attend
the event favored by the other and to play D is to go to the event favored by
itself. The version envisioned here substitutes the liberal assumption that both
parties prefer the outcome where each attends its preferred event alone to the
outcome where each attends at its less preferred event alone for the romantic
assumption that they are indifferent between these outcomes. The second game
can be regarded as an even less romantic version of Battle of the Sexes. Each
player here prefers attending the preferred event alone to attending the less
preferred event together.)
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In the chicken example, there are two pure nash equilibria, (C,D) and
(D,C), and a mixed equilibrium in which both players mix 1

3C with 2
3D. For

some applications (for example in biological models which take the strategy to
be a part of the genetic makeup of members of the species), outcomes in which
the players play different strategies are deemed unattainable, and so the mixed
strategy is the game’s sole “solution.” Since the payoff to the mixed strategy
to each player is only 2 1

3 and each player would get 3 by mutual cooperation
this gives the game the feel of a prisoner’s dilemma. It makes sense in this
case to extend our terminology. A chicken game with mixed strategies that
provide a greater expected payoff to both players than mutual cooperation can
be said to be impure. If we label the payoffs to pure strategy pairs as in the
prisoner’s dilemma then, when Rx > Sx and Ry > Sy, condition I above pro-
vides necessary and sufficient conditions for a chicken game to be impure. (Any
chicken game in which Rx < Sx and Ry < Sy is also impure.) For example, in
the chicken example above, both players can get an expectation of 3 1

9 if they
each mix 2

3C with 1
3D, compared with 2 1

3 for their mixed equilibrium and 3 for
mutual cooperation.

Similarly, in the last game, (C, D) and (D, C) are pure strategy equilibria
(representing the outcomes where the couple goes to the same event) and there
is one mixed strategy equilibrium where both players mix at 1

4C and 3
4D. The

mixed strategy equilibrium gives each player a payoff of 1 3
4 . In contrast to the

chicken game, they both prefer this outcome to mutual cooperation and mutual
defection. Again, however, there are other independent mixes that allow them
both to do even better. If both mix at 3

4C, 1
4D, for example, they each achieve

2 units. If we regard the mixed equilibrium as a natural or desirable outcome
(for example, because considerations of fairness count against the other two
equilibria) then it seems reasonable to extend the notion of impurity) to cover
this case of the liberal Battle of the Sexes. The case for the second example
is even stronger. Here, mutual defection, yielding a payoff of 3 units for each
player, is the sole equilibrium, yet by mixing at 1

6C, 5
6D, both players get an

expected payoff of 3 1
3 . So this is another example of an impure game.

In Prisoner’s Dilemmas and Chicken games, the point of mutual cooperation
lies northeast of the point of mutual defection. In the Liberal Battle of the
Sexes games the point of mutual defection lies northeast of the point of mutual
cooperation. Thus the impurity condition, that (Rx, Ry) lies to the southwest
of the line between (Sx, Ty) and (Sy, Tx), should be replaced by a condition that
(Px, Py) lies to the southwest of that line. This implies that condition I should
be replaced by

I ′) (Tx − Px)(Ty − Py) < (Px − Sx)(Py − Sy)

(This condition presumes that Px > Sx and Py > Sy. If the genus of games
includes cases in which, say, Px < Sx and Py < Sy, then all such cases would
be impure.)

The preceding discussion might suggest that any game whose diagram is con-
cave on the northeast side be regarded as impure. The following two examples,
however, should give us pause.
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C D
C 5,1 2,7
D 7,2 1,5

C D
C 8,0 2,7
D 7,2 0,8

Figure 5: Two Pure Games?

In both cases the sole nash equilibrium is (C, D), and in both cases no
outcome (mixed or pure) affords both players a greater expected payoff than
this outcome. It is true that in the second game there are pairs of mixed
strategies (e.g., 1

6C, 5
6D for x and 5

6C, 1
6D for y) that afford both players a

higher expected payoff than (D, D) and others (e.g., 5
6C, 1

6D for x and 1
6C, 5

6D
for y) that afford both players a higher expected payoff than (C, C). It is hard to
imagine, however, an interpretation in which either (C,C) or (D, D) would be
regarded as the natural or desirable outcome for this game. And in the second
example, because Ry and Px are the largest payoffs in the matrix, no outcome,
mixed or pure affords both players a higher expectation than (C,C) or (D,D).

The notion of impurity given here, resting as it does on the notions of natural
or desirable outcomes, is an informal notion and one which might, in some cases,
depend on the intended application of the game as well as the game itself.
Alternatively, impurity could have been identified with some formal property
that generalizes on the impure prisoner dilemmas. The most likely candidate is
the property that, for every pure outcome of the form (X,X), there is some pair
of independent mixed strategies that provides both players a greater expected
payoff. In that case we would would say that the second of the two examples
in figure 4, in addition to the three examples of figure 3 are impure, and only
the last example of figure 4 is not. I prefer to keep the label to describe what
seems to me to be the more interesting examples.
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