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Modal Logic

Modal logic, narrowly conceived, is the study of principles of reasoning involving

necessity and possibility. More broadly, it encompasses a number of inferential systems

structurally similar to those that have been devised for necessity and possibility. In this sense,

deontic logic (which concerns obligation, permission and related notions), and epistemic logic

(which concerns knowledge and related notions) are branches of modal logic. Still more broadly,

modal logic is the study of the class of all possible formal systems of this nature.

It is customary to take the language of modal logic to be that obtained by adding one-

place operators ~ and � for necessity and possibility to the language of classical propositional or

predicate logic. Necessity and possibility are interdefinable in the presence of negation:

~A:¬�¬A and �A:¬~¬A hold. A modal logic is a set of formulas of this language that

contains these biconditionals and meets three additional conditions:  1) it contains all instances of

theorems of classical logic, 2) it is closed under modus ponens (i.e., if it contains A and A6B it

also contains B) and 3) it is closed under substitution (i.e., if it contains A then it contains any

substitution instance of A—any result of uniformly substituting formulas for sentence letters in

A). To obtain a logic that adequately characterizes metaphysical necessity and possibility requires

certain additional axiom and rule schemas:

K ~(A6B)6(~A6~B)

T ~A6A

5 �A6~�A

Necessitation A/~A

By adding these and one of the ~-� biconditionals to a standard axiomatization of classical

propositional logic one obtains an axiomatization of the most important modal logic, S5, so

named because it is the logic generated by the fifth of the systems in Lewis and Langford's

Symbolic Logic. S5 can be characterized more directly by possible worlds models. Each such
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model specifies a set of possible worlds and assigns truth values to atomic sentences relative to

these worlds. Truth values of classical compounds at a world w depend in the usual way on truth

values of their components. ~A is true at w if A is true at all worlds of the model; �A, if A is

true at some world. S5 comprises the formulas true in all such models. Many modal logics

weaker than S5 can be characterized by models which specify, besides a set of possible worlds, a

relation of accessibility or relative possibility on this set. ~A is true at a world w if A is true at

all worlds accessible from w, i.e., at all worlds that would be possible if w were actual. Of the

schemas listed above, only K is true in all these models, but each of the others is true when

accessibility meets an appropriate constraint.

The addition of modal operators to predicate logic poses additional conceptual and

mathematical difficulties. On one conception a model for quantified modal logic specifies,

besides a set of worlds, the set Dw of individuals that exist in w, for each world w. �x~A, for

example, is true at w if there is some element of Dw that satisfies A in every possible world. If A

is satisfied only by existent individuals in any given world �x~A thus implies that there are

necessary individuals—individuals that exist in every possible world. If A is satisfied by non-

existents there can be models and assignments that satisfy A, but not �xA. Consequently, on this

conception modal predicate logic is not an extension of its classical counterpart. Alternative

conceptions have more serious disadvantages.

The modern development of modal logic has been criticized on several grounds, and

some philosophers have expressed skepticism about the intelligibility of the notion of necessity

that it is supposed to describe. (See MODAL LOGIC, PHILOSOPHICAL ISSUES IN.)

1,2 History

3 Propositional S5

4 Quantified S5

5 Weaker systems
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6 General results

1  History

Modal logic in the narrow sense was a topic of considerable interest to ancient and

medieval philosophers. It occupied two chapters of Aristotle's De Interpretatione, and a

substantial part of the Prior Analytics. Discussion of argument forms involving necessity and

possibility that included, and sometimes transcended, commentary on Aristotle's was standard

fare in Hellenistic and Medieval treatises on logic (see MEDIEVAL LOGIC). From our vantage-

point the ancient and medieval discussion can be interpreted as including distinctions among

various kinds of possibility and necessity and investigations of the logical relations among them

as well as logical investigations of the interactions between modalities and negation, modalities

and conditionals or consequence, and modalities and quantifier expressions. Aristotle determines

in De Interpretatione, for example, that it may be and it cannot be are contradictories, as are it

may not be and it cannot not be. Furthermore, <from the proposition it may be it follows that it is

not impossible’ and in one sense <the proposition it may be follows from the proposition it is

necessary that it should be’. In another sense (which we might gloss as it is merely possible that),

it may be is logically incompatible with it is necessary that it should be.

Besides these purely modal principles, Aristotle and his commentators were concerned

with arguments that we might think of as mixing time and modality. A notorious example is the

fallacious <sea battle’ argument for determinism that he tries to debunk in De Interpretatione.

(See DETERMINISM.) In addition to the admixture of temporal considerations, one should

observe that the notion of necessity involved in these discussions is not likely to be the same as

the one whose logical behavior was summarized above.  Aristotle himself catalogs four senses of

the word necessary in Metaphysics V Ch.5, and makes other distinctions elsewhere.

2.
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Although necessity and possibility have never ceased playing an important role in

philosophical discourse, their logical properties were largely neglected in modern philosophy

until the beginning of this century. The contemporary revival was sparked by C.I. Lewis's critique

of Russell and Whitehead's Principia Mathematica. The logical system elaborated in Principia

contained as theorems the formulas pe(qep) and -pe(peq), which Whitehead and Russell

understood as asserting the apparently paradoxical propositions that if a sentence is true it is

implied by any sentence and if a sentence is false it implies any sentence. Lewis maintained that

these propositions—while unavoidable and unobjectionable with respect to Russell and

Whitehead's understanding of implication—were false with respect to a more natural <strict’

sense of implication. He embarked on a project of determining the appropriate axioms of strict

implication with which to supplement the Principia system. In Principia the <material’

implication peq is considered true unless p is true and q false. In Lewis's systems, the strict

implication pYq is considered true only if it is [[impossible]] that p is true and q is false. Thus

Lewis's strict implication can be defined from Russell and Whitehead's e (and the negation sign,

-) and a new connective, �, of possibility: pYq = -�(p&-q). Conversely, possibility can be

defined from strict implication: �p = -(pY-p). Hence Lewis's project of finding the correct

logical principles for his notion of strict implication is tantamount to that of finding the correct

logical principles for possibility or, equivalently, those for necessity. Lewis and Langford's

Symbolic Logic describes five different axiom systems as candidates for the logic of strict

implication. Much effort was expended in the first half of the century investigating these systems

and variations of them. Even showing that all five are distinct (in the sense that they produce

different classes of theorems) required considerable ingenuity. Fifteen years after the publication

of Symbolic Logic, Carnap gave a non-axiomatic characterization of <logical’ necessity (see

Carnap 1947). <Necessarily A> is true, according to Carnap, if A is <L-true’, i.e., if A is true in

all state descriptions. (A state description is a kind of canonical inventory of the primitive

relations that hold and fail to hold of each sequence of individuals). Thus Carnap can be seen as
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making precise the old idea that necessity is truth in all possible worlds. This idea is usually

associated with Leibniz, but it is traced to Descartes by Curley (see Curley 1984) and to Duns

Scotus by Knuuttila (see Knuuttila 1982). The logic determined by Carnap's interpretation turned

out to be S5, the fifth of the Lewis and Langford systems. In the late fifties and early sixties,

several authors proposed interpretations that refined and generalized Carnap's idea by introducing

something like the accessibility relation described above (See Kanger 1957, Montague 1960,

Hintikka 1963, Kripke 1963). Kripke models, which are essentially the models described above,

are the neatest formulation of this idea. Kripke and a continuing line of successors have shown

that a great variety of modal systems can be characterized by models of this kind. This

enormously simplified the kinds of investigations of axiomatic systems mentioned above and

opened new lines of research.

Kripke models were particularly fruitful in the study of modal logic in the broader senses.

It had long been noted that the pairs it will always/sometimes be the case that, it is

obligatory/permitted that and it is known/consistent with knowledge that exhibit logical behavior

similar to that of necessarily/possibly. The success of Kripke's treatment of necessity encouraged

analogous treatments of these other notions. GA (<it will always be the case that A>) is true at

time t if A is true at all times after t; FA (<it will sometimes be the case that A>) is true at t if A

is true at some times after t. OA (<it is obligatory that A>) is true at world w if A is true at all

worlds at which the obligations of w are discharged; PA (<it is permitted that A>) is true at w if

A is true at some such worlds. KA (<it is known that A> is true at world w if A is true in all

worlds consistent with what is known at w. The resulting systems are labeled tense logic, deontic

logic, and epistemic logic to distinguish them from the original alethic modal systems for

necessity. In the last two areas this account probably takes the analogy with necessity too far, but

it still serves as a useful point of departure. (See DEONTIC LOGIC and EPISTEMIC LOGIC.) 

Among other broadly modal systems that have received attention recently are the dynamic logics

or logics of computation for reasoning about computer programs. Here worlds become
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computation states, which can be thought of as specifications of all the program variables at a

particular time, and relative possibility becomes program accessibility, which holds between two

states if a program can start in the first and terminate in the second. Such logics may be useful in

verifying, without interminable testing, that a large program is |correct|, i.e., that it does what it is

supposed to do. (See DYNAMIC LOGIC.)

The development of accessibility semantics led naturally to general questions about the

classes of systems that can be characterized by various versions of it. Some of these are discussed

below. Before the development of the accessibility interpretation, questions about the scope of

axiomatic systems were often answered by devising suitable algebraic interpretations, and

algebraic methods remain important tools for studying more general questions. Possible worlds

semantics, however, seems less ad hoc than the algebraic. It is not clear whether they provide an

analysis of necessity and possibility, or whether the notions that they incorporate—possible

world and accessibility—are themselves to be analyzed in terms of necessity and possibility.

Either way, there is a close fit between the meanings of modal terms and their possible worlds

interpretations. The notion of possible world has proved useful in philosophical discussions on

topics other than necessity and possibility—supervenience, causality, and the nature of

propositions, properties and relations, to mention a few examples. The general utility of possible

worlds has, in turn, inspired modal languages more expressive than the standard box-and-

diamond variety.

3. The System S5

As suggested above, S5 is the set of formulas provable from the axioms of classical

propositional logic (henceforth PL), the axiom schemas K,T,5, and �A:¬~¬A (henceforth Df�)

and the rules modus ponens (henceforth MP) and necessitation (henceforth Nec). It is important

to understand that Nec states ~A is a theorem if A is, and not that ~A is true if A is. Given T

and the replacement of equivalents, the latter condition would make ~A and A freely
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interchangeable, rendering modal logic pointless.

To identify a modal system in this way with its theorems and to refer to such systems as

modal logics is to follow standard, though misleading, practices. One would expect a |logic| to

indicate which conclusions follow logically from which premises, and perhaps the deductions by

which they so follow. Furthermore, although S5 and other modal systems are intended to

generate formulas true in virtue of form, it is not clear that they are intended to generate formulas

true in virtue of logical form, for it is not clear that necessity is a logical particle (see LOGICAL

FORM and LOGICAL CONSTANT). The first of these concerns can be reduced by stipulating

that A follows from a set of formulas with respect to a logic L, if and only if L contains a

conditional whose antecedent is a conjunction of those formulas and whose consequent is A. 

A model (for S5) is a pair (W,V) where W is a non-empty set (the possible worlds) and V

is a function (the valuation function) that assigns a truth value (T or F) to each sentence letter

and each possible world w0W. If M=(W,V) is a model and w0W, the notion A is true at w in M

(written (M,w)ÖA) is defined inductively, the key clauses being:  (M,w)Ö~B if, for all v0W,

(M,v)ÖB; and (M,w)Ö�B if, for some v0W (M,v)ÖB. A formula is true in M if it is true at all

possible worlds in M, and it is valid, if it is true in all S5-models.

The soundness theorem for S5 says that the semantics respects the logic in the sense that

every formula in the logic is valid. The sufficiency theorem states that every valid formula is in

the logic. To say that S5 is complete with respect to the interpretation given is to say that it is

both sound and sufficient, i.e., that validity and theoremhood coincide. Soundness is proved by

an easy inductive argument appealing to the axiomatization:  Each axiom is observed to be valid

and the two rules are shown to preserve validity. Sufficiency requires more ingenuity. A common

approach is to adapt Henkin's proof of the completeness of classical logic. (For details see

Lemmon 1966 or Chellas 1980.)  One can get an idea of the value of an interpretation and

completeness theorem by trying, with and without them, to demonstrate that ~p6~~p is a

theorem of S5.   
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In S5, all |nesting| or |iteration| of modality can be eliminated. For example, if a formula

has the form M1...MnA where each Mi is either ~, �, or negation, an equivalent formula can be

obtained by deleting all the ~'s and �'s except the innermost. Taking a modality to be a string of

~'s, �'s and ¬'s, it follows that there are only six non-equivalent modalities in S5: the empty

string, ¬,~,�,¬~ and ¬�, corresponding to simple truth, falsity, necessity, possibility, non-

necessity and impossibility.

One important schema of classical propositional logic that is [[not]] provable in S5, is 

(Ext) (A:A')6(B:B') where B' is the result of replacing an occurrence of the
subformula A in B by A'.

For example, if p and q are both true at world w but only q is true at world v, then

(p:q)6(~p:~q) is false at w. By completeness it follows that (p:q)6(~p:~q) is not a theorem

of S5. Ext (extensionality) says that replacement of one subformula by another of the same truth

value will not affect the truth value of the whole. Its failure is often viewed as characteristic of

modal systems in general. Note however, that provably equivalent formulas can be substituted

for each other.

S5 is a relatively strong modal system. Its only extensions are the trivial logic, containing

all instances of ~A:A and, for every natural number n, the n-possibility logic, containing all

instances of (�A1v...v�An+1)6Dis where Dis is the disjunction of all formulas �(AivAj) such

that i<j#n+1. (n-possibility logic is complete with respect to the class of all models with at most

n possible worlds.)

The formulas of (propositional) S5 correspond to formulas of classical monadic predicate

logic in one variable. �(p1v~p2) for example, corresponds to �x(P1xv�xP2x). Since decision

procedures for monadic predicate logic are known, this correspondence allows one to effectively

determine whether a formula is in S5 by testing the corresponding monadic formula for validity.

A more direct proof of decidability rests on the result that S5 has the finite model property: every

non-theorem is false in some model with finitely many worlds. To test whether A is in S5, one
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checks first whether A is provable in one step or falsifiable in a one-world model, then whether it

is provable in two steps or falsifiable in a two-world model, and so on. Each step can be

completed in finite time. By the finite model property, there is some step n at which the process

yields the desired answer.

The most important philosophical question about S5 is whether it captures the inferences

and truths it was intended to. This may depend, of course, on the kind of necessity that ~ is

supposed to represent. On the usual view this is broadly logical or metaphysical necessity. Truths

necessary in this sense include those true in virtue of logical form (the logical truths), those true

in virtue of meaning (the analytic truths) and a more problematic category of those true in virtue

of the basic nature of things. The last category has been said to contain truths of mathematics, the

proposition that water is H2O , the proposition that Queen Elizabeth came from the egg and

sperm that she did (see ESSENTIALISM). All these examples are controversial, but those who

argue whether particular propositions are metaphysically necessary may nevertheless share a

common conception of what it is to be metaphysically necessary. Furthermore, examples of

propositions that lack metaphysical necessity seem uncontroversial: Napoleon invaded Russia,

Asbestos is carcinogenic, Paris is the capital of France. The question of whether S5 (or any

other system) is the right |logic| for metaphysical necessity can be divided into two parts,

corresponding to the two parts of the completeness theorem. Say that S5 is correct if every

theorem represents a formal truth about metaphysical necessity. Say that it is adequate if every

formal truth (with and, not, or and if as well as necessarily and possibly) is represented by a

theorem. Correctness and adequacy, then, are philosophical counterparts to soundness and

sufficiency.

Correctness can be established by an argument similar to that for soundness: first show

that the axioms represent formal truths and then that the rules transform formulas representing

formal truths into formulas representing formal truths. Axioms T, for example, clearly represent

formal truths. (If necessarily 87+25=112 then 87+25=112 is true in virtue of its form). The
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difficult cases are axioms 5 and rule Nec. For the former case we need to establish that sentences

of the form <If possibly S then necessarily possibly S> are true in virtue of their form. One

argument is as follows. To say possibly S is to say that <not S> doesn't follow logically or

analytically from a description of the natures of things or from logical truths or analytic truths,

i.e., that S is logically and analytically consistent with the basic natures of things. But a

proposition that something is consistent with logical laws, meanings, and basic natures in this

way is true or false in virtue of those logical laws, meanings, and basic natures. So <possibly S>,

if true, is necessarily true. And since this argument does not appeal to S, the conditional is true in

virtue of its form. An argument for the rule Nec, might go as follows. Once it is established that

all the axioms represent formal truths and that MP preserves formal truth, we know that

everything proved without Nec represents a formal truth. Since formal truths are either logical or

analytic, they are necessarily true. Since the argument that any of these sentences S is necessary

relies only on the form of S, necessarily S is true in virtue of its form. This establishes that the

first application of Nec results in formulas that represent formal truths. But if a sentence S

proved with one application of Nec is shown to be a formal, and hence necessary, truth by an

argument that appeals only to S's form, then <necessarily S> must be true in virtue of its form. In

this way, the argument can be extended to any subsequent application of Nec.

Adequacy might be established indirectly. Suppose that S5 were not adequate for

metaphysical necessity. Then there would be some formal truth S with necessarily, possibly, and,

etc., represented by a formula A that is not a theorem of S5. We should, then, be able to |improve|

the adequacy of S5 by adding A as an axiom. Furthermore, all the substitution instances of A will

represent sentences with the form of S, which, if S is a formal truth, will also be formal truths. So

we should be able to add all the substitution instances of A as well, obtaining an extension of S5.

But, as was noted above, the extensions of S5 must contain either ~A:A or, for some n,

(�A1v...v�An+1)6Dis. All these are incorrect for metaphysical necessity.



11

4. Quantified S5

Consider a language obtained by adding ~ and � and a special predicate E of existence to

a version of predicate logic with predicates P1, P2, ... , individual constants, t1,t2,..., and the

identity sign, =. A model is a triple (W,D,V) where W is a non-empty set (the possible worlds), D

is a function that assigns to each w0W a set Dw (the domain of w) and V is a function that

assigns to each constant t a member of the union cD of the sets Dw (the possible object denoted

by ti) and, to each world and n-place predicate, an n-ary relation on cD. A definition of truth at a

world is obtained from the previous one by replacing the base clause and adding clauses for �, �,

=, and E. The quantifier clauses state that, for example, �xPx is true at w if, for every d in Dw, Pt

is true at w when t denotes d, and that �xPx is true at w if, for some d in Dw, Pt is true at w when

t denotes d. s=t is true at w if s and t denote the same possible objects. Es is true at w if V(s)0Dw.

This interpretation reflects several choices. First, constants are objectual, i.e., V assigns a

possible object directly to each constant. ~Pcd is true at w if the possible objects V(c) and V(d)

are related, at every world w, by V(P,w). Thus ~Pcd expresses a de re necessity. It asserts that

particular objects, independently of their descriptions, are necessarily related. This treatment of

constants makes the schemas (c=d)6~(c=d) (necessary identity) and ¬(c=d)6~¬(c=d)

(necessary difference) valid. Kripke has influentially argued that this is appropriate if c and d

represent proper names of natural language, and inappropriate if they represent definite

descriptions (see PROPER NAMES). The alternative to treating constants objectually is to allow

their denotations to vary from world to world. An (individual) concept is a function from worlds

to individuals. For example, the concept first person to reach the South Pole might assign

Amundsen to this world, Scott to the possible world in which Scott wins his race with

Amundsen, and nothing to possible worlds in which the Pole is never (or always) occupied by

people. We can regard a constant with a non-objectual interpretation as denoting a concept rather

than an individual. On this |conceptual| interpretation, necessary identity and necessary difference

are not valid. Quantification may be treated conceptually as well: �xA is declared true at w if
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every individual concept assigns to w an object to which A applies at w. In that case, quantified

necessary identity and difference formulas—�x�y(x=y6~x=y) and �x�y(¬x=y6~¬x=y)—lose

their validity as well. The quantification described above, by contrast, is objectual.

Second, quantification is actualist. The truth of �xPx at w requires only that the objects in

Dw have the appropriate property. It follows that the Barcan formula, �x~Px6~�xPx, and its

converse, ~�xPx6�x~Px, are both invalid. Suppose, for example, that for some world w, P is a

predicate that holds everywhere of just the objects that exist in w, and that Du contains something

not in Dw. Then at w, everything is necessarily P is true while necessarily, everything is P is

false. Conversely suppose that, at every world w, P holds of just the objects that exist at w, and

that Dv contains something not in Du. Then at v Necessarily everything is P is true, while

Everything is necessarily P is false. More generally, �x~�y~A, ~�x�y~A, ~�x~�yA, and

~�x~�y~A are logically distinct. If quantification is possibilist, i.e., if �xA means that A is

true of all objects in cD, then these formulas are all equivalent and the Barcan formula and its

converse are valid. The distinction between actualist and possibilist quantification is significant

only because the models defined above have domains that vary from world to world. If one

stipulates constant domains, i.e., that Du=Dv for all worlds u and v, then the possible objects are

just the actual ones, and the distinction collapses. Barcan and its converse are again valid.

Third, predicates can be truthfully applied to constants denoting non-actual objects. Since

quantification is actualist, this implies that the classical theorems Pc6�xPx and �xPx6Pc, are

not valid. These principles can be retained by insisting that the application of predicates to

constants denoting non-actuals is always false (defining models so that V(Pi,w) is a relation on

Dw). But to do so would be to adopt a kind of atomism according to which the properties and

relations expressed by atomic formulas with free variables have a special status. Furthermore,

although it would save the particular classical theorems above, some of their substitution

instances—like ¬Ex6�x¬Ex—would still fail. Another alternative is to stipulate that formulas in

which predicates are applied to constants denoting non-existents lack truth value. If validity is
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taken as <false in no model’, both the formulas and their instances are saved. On the other hand

that approach would seem to make ~Ec valid (if necessity is <nowhere false’) or to make

~(Fcº¬Fc) invalid (if necessity is <everywhere true’).

Finally, domains are permitted to be empty. This implies that ��x(Fxw¬Fx),

~�x(Fxw¬Fx) and �x(Fxw¬Fx) are all invalid. If one regards the first as expressing a formal

truth, one can require that some world have non-empty domain; if the second, that all worlds do.

If one regards the third as expressing a formal truth one can require that each model specify—in

addition to the possible worlds, domains, and valuation—a particular possible world (the actual)

that has a non-empty domain. Truth in a model is then redefined as truth at the actual world of

the model

5. Weaker systems

A Kripke model is a triple (W,R,V) where W and V are as in §3, and R (accessibility) is a

binary relation on W. Truth at a world is defined as before except for the ~ and � clauses: 

(M,w)Ö~A if, for all v0W such that wRv, (M,v)ÖA;  (M,w)Ö�A if, for some v0W such that

wRv, (M,v)ÖA. Truth in a model and validity are defined as before. The formulas valid in this

sense comprise the logic K. K can be axiomatized by the schemas PL, K, Df� and the rules MP

and Nec. Since it lacks the schema ~A6A, K is not adequate for necessity under any construal. It

occupies an important position in modal logic in the broader sense, however, because many well-

known modal systems are simple extensions of it. The systems in the leftmost column of the

table below, for example, are obtained by adding the schemas in the middle column to PL, K and

Df� and the rules MP and Nec.
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Syste

m

Characteristic Axioms Conditions on R

D D: ~A6�A  seriality: �x�yRxy

T T reflexivity: �xRxx

S4 T

 4: ~A6~~A

reflexivity 

transitivity:

�x�y�z(Rxy&Ryz6Rxz) 

S4.3 T,4

H:

�A&�B6�(Av�B)w�(�AvB)w�(AvB)

reflexivity, transitivity

connectedness: �x�y(RxywRyx)

GL W: ~(~A6A)6~A transitivity

no infinite chains:

Rx1x2&Rx2x3&...6�i(xi=xi+1)

The schema D is formally true when ~ and � are read it is obligatory that and it is

permitted that, and the system D is known as the standard deontic logic. T was one of the earliest

modal logics to be characterized precisely (see Feys 1937, 1938) and it seems to be the weakest

logic in which ~ can be plausibly regarded as representing a reading of it is necessary that. If, as

some have suggested, the remaining S5 axioms are not correct for physical necessity, T would be

a plausible candidate for the logic of that notion. S4 was the fourth of the Lewis systems. Gödel

gave it a characterization like the one above and showed it to be intertranslatable with

intuitionistic propositional logic (see Gödel 1933) .  S4.3 (so named, in part, because it is

intermediate in strength between S4 and S5) is correct and adequate for a reading of ~ as it is

and always will be the case that if time is assumed to be linear (see TENSE AND TEMPORAL

LOGIC). If sentence letters represent statements about numbers and ~ is interpreted as provable

in arithmetic then the system GL contains exactly the formulas that are themselves provable in
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arithmetic (where a statement about provability is |provable| if its Gödel number is the number of

a theorem of arithmetic). By adding all instances of ~A6A to the theorems of GL (without

allowing any new applications of the rule Nec) one obtains the system GLS, which may be

regarded as the logic of arithmetic provability. Whereas GL comprises the arithmetically

provable formulas about provability, GLS comprises the truths about provability (see

PROVABILITY LOGIC).

Each of these logics can also be characterized semantically, just as K was. A D-model is a

Kripke model whose accessibility relation is serial, i.e., every world is related to some world or

other, and models appropriate for each of the other systems can be similarly defined by the

conditions in the table above. In each case, soundness and completeness results like the one for

S5 sketched above can be given. 

Not all broadly |modal| systems can plausibly be interpreted by Kripke models. Suppose

~A is read usually A. There is no relation on times such that usually A is true now if A is true at

all related times. Rather, the truth of usually A depends on the number, and perhaps the

distribution, of all the times at which A is true. This suggests a more general kind of modal

semantics, one formulation of which is the neighborhood semantics. A neighborhood model is a

triple (W,R,V) where W and V are as before, and R is a relation between worlds and sets of

worlds (the neighborhoods of those worlds, although there is no requirement that the

neighborhood of a world contain the world itself, or even that it be non-empty). The definition of

truth at a world is as before except that ~A is true at w just in case w is related to the truth-set of

A, i.e., the set of worlds at which A is true; and �A is true at w if w is unrelated to the |falsity-set|

of A. The modal system that is determined by the set of all such models is the system E,

axiomatized by the schemas PL and Df� and rules MP and equivalents (RE), <if A:B is

provable, so is ~A:~B’. Like K, E provides a convenient base from which a variety of systems

of interest can be constructed, rather than a characterization of the formal truths for some

particular reading of ~. This idea can be carried even further. OL (Operator logic) is the system
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in the language with ~ that is axiomatized just by PL (see Kuhn 1981). The modal operators of

S5, K, E, and OL, can be regarded as being successively more schematic and having successively

less content, the theorems of OL being the modal sentences that are true in virtue of their

[[logical]] form, and the stronger modal systems being theories of operators based on that logic.

6. General results

Much of the contemporary study of modal logic is directed, not towards investigating any

particular one of the systems described above in more detail, but towards a general understanding

of classes of such systems. The modal logics, as defined above, form a lattice structure: each pair

has a unique minimal extension and a unique maximal sublogic. A Kripke model M=(W,R,V)

can be viewed as the addition of a valuation V to the Kripke frame (W,R). M is then said to be

based on (W,R). Similarly, the neighborhood model (W,N,V) is based on the neighborhood

frame (W,N). A formula is valid in a frame if it is true in all models based on the frame, and it is

valid in a class of frames if it is valid in all frames of the class. A frame for L is a frame in which

all the theorems of L are valid. The set of formulas valid in a class of frames is a logic, the logic

determined by that class. A logic is sound for a class of frames if every formula in the logic is

valid in the class; it is sufficient for the class if every formula valid in the class is a member of

the logic; it is complete (for the class) if it is sound and sufficient. 

The logic determined by a class of frames is, by definition, complete for that class. On the

other hand it might be complete for other classes as well. K, for example, is determined by (and

therefore complete for) the irreflexive Kripke frames as well as all Kripke frames. In 1974, Fine

and Thomason independently showed that there are finitely axiomatizable extensions of K that

are not determined by any class of Kripke frames (see Fine 1974 and Thomason 1974). Such

logics are incomplete: formulas true in every frame that verifies the axioms are unprovable. It is

now known that the incompleteness phenomenon is widespread. For every extension L of the

logic T there are uncountably many incomplete logics whose frames are exactly the frames for L.
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(This result holds for both Kripke frames and neighborhood frames. See Benton 1985.) The

incomplete logics that have been exhibited in the literature are generally complex and ad hoc, but

one simple example is obtained from GL by replacing the first conditional of the schema W by a

biconditional. In the other direction, results of Bull and Fine imply that every extension of S4.3

that admits the necessitation rule is complete and decidable (see Bull 1966 and Fine 1971).

Much work has also been done on the correspondences between modal and classical

formulas. The schema T corresponds to the classical formula �xRxx in the sense that the frames

for the former are just the first order models for the latter. Most modal schemas that have arisen

naturally in philosophical discussion correspond similarly to first order formulas. The schemas in

the second column of the table above, for example, correspond to formulas in the third column.

The McKinsey schema, ~�A6�~A, on the other hand corresponds to no first order formula (see

van Benthem 1975 or Goldblatt 1975), and no modal schema corresponds to irreflexivity:

�x¬Rxx. (The latter fact follows from the remark above that K itself is complete for the

irreflexive frames.) 

The general study of modal logic encompasses a variety of other topics, including:

model theory (transformations of frames and models may preserve truth values of classes of

formulas), boundary investigations (some logics have properties that all their extensions lack),

expressive power (some classes of modal connectives can be defined from a few representatives),

and connections with non-modal logics (like that between S4 and intuitionistic logic). The

completeness and correspondence investigations discussed above, however, have formed the core

of contemporary investigations.
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