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Reflections on Ethics and Game Theory

1. Introduction

It is plausible to suppose that morality, at its core, is about meshing our own interests

with those of others, sometimes consonant with ours and sometimes conflicting. What we

investigate as moral theorists may include (explicit and implicit) rules of conduct, qualities of

people and institutions, and attitudes toward and emotions elicited by conduct, people and

institutions.  The particular rules, qualities, attitudes and emotions that are of interest are ones

that restrain us from thwarting the interests of others to better serve our own or which move us to

advance mutual interests or to advance the interests of others at the expense of our own.  The

best developed theoretical framework within which questions about conflict and congruence of

interests is addressed is the mathematical theory of games.  It is natural, therefore, to expect that

game theory might be useful in moral theorizing, that it might serve, as R Braithwaite wrote

during its early years of development as "a tool for the moral philosopher."    Indeed, one might

expect crisp game-theoretic analyses would eventually supplant much of the murkier ordinary

language debate that fill the ethics journals.  Yet, in spite of a few promising forays by people

who might be regarded as insiders to moral philosophy1 and several instructive suggestions by

outsiders,2 this expectation has not materialized.

Two obstacles, I believe, have thwarted a fuller realization of Braithwaite’s vision. First,

we have not been sufficiently careful in thinking about the game theoretic framework most

appropriate for these discussions and the proper interpretation of the technical devices employed.

These may well differ from the frameworks and interpretations suitable for other applications of

game theory.   Second, a number of examples from game theory seem to challenge its purported

relevance to moral philosophy, or at least to raise questions about the proper relations between

the two disciplines.  In this paper I will first discuss several important foundational issues. Then

I will present four of the challenging examples and begin to speculate about what lessons we

ought to draw from them.



Reflections

3

I am afraid that much of what follows will seem (correctly) to be unsolicited exhortations

to others. One of the most influential papers in philosophical logic over the last few decades

began with the observation that it is much more pleasant to give advice to receive it.  We on the

less pleasant side of the subsequent transactions were happy to accept our role because of the

author's eminence and talents.  I have no illusions that my own advice will be so cheerfully

accepted.  I do hope, however, that it might inspire some further examination of the connections

between ethics and game theory.     

2. The Framework

2.1. Iteration

The action in game theory seems to have shifted from the one-shot game to the repeated

game and especially to evolutionary versions of such games in which the more successful

strategies replicate themselves and the less successful die out.  Those of us interested in moral

philosophy should be a little careful about joining the bandwagon. It is true that many actions

that concern moral philosophers--paying debts, helping others, honoring promises, keeping

confidences--are the kinds of actions that are performed repeatedly and it is not unreasonable to

suppose that this fact is relevant to their moral status.  There are several reasons, however, not to

write off the importance of the one-shot game in ethical theory.  First, not all morally significant

actions are repeated.  It is difficult to imagine genocide, for example, modeled as a move in an

iterated game. Furthermore, in standard treatments of repeated games, the appropriate strategy

depends on the likelihood that the game will continue from one round to the next. When that

likelihood approaches zero, the game is identified with the one shot game.  Morality does not

seem like that.  The rule that ought to guide my action does not change because this is the last

time I am to be faced with a particular kind of choice.  It seems at least as virtuous to abide by

the usual moral practices of helpfulness, generosity, truthfulness, etc., on one's deathbed as in the

prime of health.  Indeed, the kind of "cooperation" in one round of a repeated game that is

explained by the rewards and punishments that the players might expect in later rounds is exactly

the kind of cooperation that does not require morality at all.
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Even those morally significant act types that we do perform repeatedly are often

performed only once with a particular partner and with no knowledge of what moves that partner

has made in previous play with others.  Consider, for example, Ann's refraining from stealing the

coins in the cup of a blind beggar she passes on vacation in San Francisco, or Baden's gallant

efforts to help an old lady across the street. It is unlikely that Ann or Baden knows anything

about the prior "play" of their partners, or that the pairs will interact again with similar or

switched roles. This suggests that when we choose to employ the iterated game, it would be

appropriate to consider a version in which the history of previous play is unavailable to the

players.  Strategies like Tit for Tat that are conditional upon play in previous rounds then make

no sense. Since the relative payoffs for unconditional strategies are the same no matter how

many iterations of a game are played, we may as well take each stage to comprise just one

(possibly mixed) play of the game by every pair of members of the population. The games can

still be considered evolutionary.  After each stage, the number of players playing successful

strategies increases relative to the number playing unsuccessful strategies. The stages

themselves, however, are viewed as sets of one-shot games being played simultaneously rather

than repeated sequences of games. To distinguish the framework suggested here from the one

that has become more commonly adopted, we call the former parallel and the latter serial. 

Parallel evolutionary games were, in fact, employed by Maynard Smith and others in early

biological applications of game theory and emphasized in the writings of Bryan Skyrms and

Robert Sugden.  But it in more recent literature they seem to be increasingly neglected in favor

of serial games.  One-shot games, parallel evolutionary games and serial evolutionary games

may all clarify aspects of moral philosophy, and I will have things to say about all of them. 

Since they have different properties, it will be important to specify which kind of game is being

considered.

2.2. The dynamics of evolution. 

Many properties of evolutionary games are sensitive to the choice of evolutionary

dynamics, i.e., of the rules that determine how the population of players is altered at each stage.  
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For biological purposes it makes sense to think of the players at each stage as comprising a

generation and the payoffs as measures of fitness, indicating the expected number of like-

playing offspring a player will have in the next generation3.  If we assume that the total

population remains constant, this gives rise to the replicator dynamics described by the

following equation:

R)   pi
*  =  pi (Vi/V)

Here pi*, the proportion of the population playing strategy i at a given stage, is the product of the

proportion pi playing i in the previous stage and the ratio Vi/V of the payoff of strategy i to the

average.

  When the concern is cultural transmission rather than biological, it makes sense to think

of a fixed population of players who discard and adopt various strategies as the game progresses,

rather than a changing population whose members, on death, leave varying numbers of offspring.

It is not clear that the replicator dynamics is appropriate in these contexts.  Those who bother to

discuss their use of replicator dynamics for models of cultural transmission sometimes point to

results establishing that replicator can arise under various other scenarios of player choice. In

one scenario (described, for example, in Gintis), players compare their own payoffs in the

current round with the payoffs of others in that round.  Each player i switches to the strategy of

player j with probability zero if Vi < Vj and with probability proportional to Vj-Vi otherwise.  In

another scenario (described in [Bendor and Swistak, 1997]), player i’s probability of switching

to the strategy of player j depends on two attributes of j:  j’s payoff relative to the average,  Vj/V, 

and the proportion Nj /N of players employing j’s strategy.   The first parameter is viewed as an

indicator of the present success of j’s strategy and the second parameter as an indicator of its past

success.  We suppose, further, that i’s probability of switching to j’s strategy rises exactly as

much when the first parameter is raised by a fixed amount as when the second parameter is

raised by that amount, and that the rate at which i’s probability of switching to j’s strategy grows

with the proportion of players using j is itself independent of that proportion.  Under both of

these scenarios, it turns out that the replicator dynamics correctly describes how the population

evolves, and this may be thought to justify the common practice of borrowing this biological

model for descriptions of cultural evolution.  
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Several authors have suggested that a more appropriate dynamics for cultural

transmission is winner imitation.   After each generation, every player whose payoff is less than

anybody else's switches (with probability a) to a strategy whose payoff is maximal.  In the

version of winner imitation described in the equation below, it is assumed that if there is more

than one strategy with maximal payoff, the players who switch choose randomly among the

winning strategies and therefore divide themselves evenly among them.

WI)     

  Let us temporarily set aside the question of whether any of these stories about

evolutionary dynamics are appropriate for serially repeated games.  In the parallel framework,

especially if some mixed strategies are permitted, they seem implausible. If players don't know

the history of others' past play, it is not likely that they know the strategies that have produced

the current behavior, and so it is unlikely that they will be able to imitate more successful

strategies.  A more plausible story is this.  Players are more likely to stick to a strategy if it has

been successful and they are more likely to switch to another strategy (any other strategy) if it

has not.  So the probability of changing to a new randomly chosen strategy in each round should

be a decreasing function of one’s relative payoff under the old strategy in the preceding round. 

We might label such a dynamic "failure-induced groping," or FIG.    A FIG dynamics is still an

evolutionary dynamics in a broad sense: the numbers of the successful strategies tend to increase

relative to the unsuccessful ones.  One reasonable FIG dynamic, for example, is described by

equation below (where N is the total number of strategies).

FIGp)  

Here the probability of abandoning strategy i in favor of a randomly chosen strategy is



Reflections

7

proportional to the size of i’s payoff relative to the largest and smallest payoffs obtained by any

players.  Specifically, the probability of abandoning i is proportional to (VM-Vi)/(VM-Vm) where

VM and Vm are the largest and smallest payoffs obtained. If the constant of proportionality " is

one, a player who gets the maximum payoff will maintain the current strategy with certainty and

a player who gets the minimal payoff will abandon the current strategy with certainty.  If " is

less than one, the players will be less likely to abandon inferior strategies. It is assumed that

players who abandon their strategies distribute themselves evenly over the remaining strategies. 

Another plausible FIG dynamic, described by the equation below, assumes that each player

wants to maximize his expected payoff. 

FIGd)

 To this end he retains his strategy with certainty if its payoff exceeds the average payoff in the

population and abandons it with certainty otherwise.  Since there may be some cost to switching,

the equation requires that i’s payoff exceed the average by more than some threshold constant $.

The first FIG dynamic is proportional, the odds of switching increase continuously as payoff

declines.  The second is discrete, the odds of switching jump from 0 to 1 when conditions

warrant. Both FIG dynamics require that players know something about the payoffs to others in

their generation, but neither requires that they know the strategies others used to obtain those

payoffs. 

If all mixes of permissible strategies are permitted, a plausible dynamic might involve

stochastic learning.  Each player observes the strategy that is realized when she implements her

mixed strategy and the payoff that results.  She updates her mix noting the component of her mix

that actually gets realized in play and by adding to the weight of the component realized in

proportion to the relative payoff received.4  Alternatively one might consider a stochastic

replicator dynamics, whereby each player changes the weights on his mix in proportion to the

relative payoffs received by the strategies realized by others in the previous round.  

Each of the dynamics described can and should be modified to include the possibility of
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mutation or error. In each generation a few players may be assumed to change to (or give birth

to) a strategy chosen at random from the strategies represented in the population.  This feature

may significantly change the course of evolution.  Without it, for example, none of the above

dynamics except the stochastic ones would allow the population to change once every strategy

received the same payoff.  Although some writers have done so, it is not reasonable to suppose

that the rate of such mutation or error is zero.  The idea of error or mutation suggests that an

unexpected player replaces a particular member of the old population. Sometimes, however,

mutants are described as “invaders,” suggesting that they are just added to the population, and

the dynamic, “makes room” for them by a tiny proportional adjustment in all the other strategies. 

This distinction should not matter unless the population size is small. 

The FIG dynamics and the stochastic learning dynamics employing relative payoffs place

fewer informational requirements on players than the replicator and winner imitation dynamics

that have been more widely used.  For purposes of modeling moral evolution, it may turn out

that even these requirements are too strict.  Some even less demanding dynamics will be

discussed in subsequent sections.  It may well turn out that, for games of interest to us, a variety

of these dynamics are equivalent in the sense that they take identical initial populations to

identical final states.  Until that has been demonstrated, however, we should study the dynamics

most plausible for the application we have in mind.  And even after it has been demonstrated, the

more faithful dynamics might be  retained to understand the path from initial to final state or the

speed with which that path is traversed.

2.3. Solution concepts

One of my exhortations is to think more carefully about conditions that a set of strategies

must meet to be considered a solution to a game.  Formulating such conditions requires

reflection on the phenomena that the game is supposed to model and the insight the modeling is

supposed to provide.  In the evolutionary context, we generally think of these games as modeling

purely descriptive phenomena: what people actually do or believe rather than what they should

do or believe. The observation that the strategies we employ constitute a “solution” to such a

game should then serve as an explanation for our employing them. Players don’t really “solve”
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these games themselves, but instead evolution leads them inevitably to a “stable equilibrium.”  

The trouble is that common notions of evolutionary stability are often either too strong or too

weak.  If they are too strong, they will not be met by any population of strategies--including the

one describing the state whose presence we wish to explain.  If they are too weak, they will be

met by too many populations of strategies. The fact that our state happens to correspond to one

of these will not have much explanatory force.  Some details of this awkward situation are

summarized below. 

 Originally, evolutionary stability was taken to be a property of strategies.  A strategy is

supposed to be evolutionarily stable if a population using that strategy will not be dislodged by

the course of evolution.  A number of authors formulated conditions on game payoffs that were

intended to characterize this notion of a stable strategy.  Early work on evolutionary games was

marred by a failure to realize that these characterizations are not equivalent.  For example,

Axelrod and Hamilton claims to show that Tit for Tat was an evolutionarily stable strategy in the

sequentially repeated prisoner’s dilemma, while Selten and (Boyd and Lorberbaum) offer proofs

that no such strategies exist, all apparently unaware that they are employing three different

concepts of evolutionary stability.

 (Bendor and Swistak, 1998) does a good job of sorting out the confusion.  Listed below

are conditions for evolutionary stability of strategy i employed by Axelrod, Maynard Smith,

Boyd and Lorberbaum and Bendor Swistak.  (j is a strategy and V(i,j) is the payoff to a player

employing i when meeting a player employing j.) 

A) "j[V(i,i)³V(j,i)],

MS) "j[ V(i,i)>V(j,i)  or  (V(i,i)=V(j,i) & V(i,j)>V(j,j)) ],

BL) "j[ V(i,i)>V(j,i)  or  (V(i,i)=V(j,i) & "kV(i,k)³V(j,k)) ],

BS)  "j[ V(i,i)>V(j,i)  or  (V(i,i)=V(j,i) & V(i,j)³V(j,j)) ].

  MS and BL each correspond to a notion of universal stability: strategies meeting these

conditions survive invasion under any evolutionary dynamic. BS corresponds to a notion of
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restricted stability: strategies satisfying it survive under the replicator dynamic, but perhaps not

under other evolutionary dynamics.  MS is strong: strategies meeting it drive to extinction any

mutations that appear among them; whereas BL is weak: such mutations could survive among

the natives, even though they do not grow. MS is narrow: strategies meeting it are invulnerable

only to homogeneous invasions of mutants, whereas BL is broad: strategies resist mixed

invasions as well. (The distinction between broad and narrow stability is not relevant for

restricted stability: under the replicator dynamics a strategy resists heterogeneous invasions if

and only if it resists homogeneous invasions.  Condition A merely states that i forms a nash

equilibrium with itself.  If i satisfies A then a population of i-players will not be dislodged under

an evolutionary dynamic with a zero mutation rate. It may be overthrown, however, by a single

invader. A population composed entirely of a strategy i that meets A, but not the other stability

conditions is sometimes said to be an unstable equilibrium.   

There is no good reason, in discussing concepts of stable equilibria, to restrict attention to

populations playing a single strategy. Solution concepts in non-evolutionary games, after all, do

not require that players play similarly. We may as well take any strategy set (i.e., any partition of

the population into subpopulations by strategy) to be evolutionarily stable if it is similarly

impregnable.  The definitions above require some modification in the broader framework. No

heterogeneous population can really admit invaders because the strategy set representing the

original population is changed, (and thus “driven extinct”) by the presence of a single invader.  It

is more appropriate in the general context to say that a population is strongly stable if the

dynamics restores the strategy set to its original condition after a small invasion, and weakly

stable if the dynamics does not carry the strategy set farther from its original condition after a

small invasion.

One might expect that all the stability concepts from (Bendor and Swistak, 1998)

discussed above would easily generalize to the broader framework. Replace each occurrence of

strategy i in the above conditions with a strategy set profile s=(s1,…,Sn) where s1,…,Sn  are the

proportions of the population playing strategies 1,…,n, and take V(s,x) to be the average payoff

to a member of s when each member of s  plays x (if x is a strategy) or when it plays each



Reflections

11

member of the population represented by x (if x is a profile.)   This does not quite work in finite

populations, however.  Consider, for example, a two-person two-move game whose only nash

equilibrium is a fifty-fifty mix of the two moves. One example is penny mismatch, where each

player chooses “heads” or “tails,” with the object of choosing a different face than his opponent.

An evolutionary version of this game played with n players (who cannot themselves mix

strategies) has a profile meeting MS if n is even (viz., (.5,.5)),  but, if n is odd, it doesn’t even

have a profile meeting A.  If we make some reasonable stipulations,5 then the closest attainable

approximations to (.5,.5), namely ((n-1)/2n, ((n+1)/2n) are, in fact stable.  More generally, we

can take the simple generalized stability conditions to apply to “games” in which there are a

continuum of players so that all profiles (p1,…,pn) 0£pi£1 are realizable.  To find the equilibria in

the n player game, we first find those of the game with a continuum of players.  Then we look at

what happens to the closest approximations to these in the n-player game. If the dynamics carries

one of these profiles to its neighboring equilibrium, it is itself an equilibrium in the n-player

game.  Otherwise, it is not.  If the equilibrium it is carried to is stable, so is the approximation,

otherwise it is not. Examples of these phenomena are given in the appendix.  In what follows,

therefore, we generally take the stability conditions to apply to strategy profiles and assume a

continuum of players, with the understanding that information about the n-player case can be

extracted.

Once the stability conditions are set out it is easy to map the logical relations among

them.  MS and BL are independent and each implies BS, which in turn implies A.  For sequential

evolutionary games, MS and BL are too strong:  they cannot be met. BS and A are generally too

weak.  For example, in an evolutionary version of the iterated prisoner’s dilemma they are met

by populations supporting zero percent cooperation, one hundred percent cooperation or any

figure in between. 

One source of the “excessive strength” difficulty is that sequentially repeated games

allow so many different strategies.  For example, the reason that MS cannot be satisfied by any

single strategy is that for any strategy i, it is possible to construct a strategy j different from i that

mimics the way i plays against i and j.  Clearly in this case we can’t satisfy either of the

inequalities V(i,i)>V(j,i) or V(i,j)>V(j,j). So the difficulty may not arise when the permissible
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strategies are limited.  This is exactly what happens in the case of the parallel versions of the

evolutionary game. These can be regarded as obtained from the sequential game by allowing

only the simplest strategies–the unconditional ones. 

If there is any strategy i such that (i,i) is a strict nash equilibrium in the underlying one-

shot game, i.e., any i such that V(i,i)>V(j,i) for all j¹i, then i satisfies every stability condition

listed above.  Conversely, if i meets any condition on the list then (i,i) is a weak  nash

equilibrium in the underlying game.  Among the strategies that form weak nash equilibria with

themselves, some meet MS but not BL some meet BL but not MS, and some meet neither.

(Examples are provided in the appendix.)   Since many parallel games have strategies that form

nash equilibria with themselves, the difficulty of excessive strength may not be a great concern

in this framework.  

 To meet the difficulty of excessive weakness, at least two ways of discriminating among

the stable profiles have been invoked.  Suppose S is a stable profile.  The “basin of attraction” of

S under a particular rule of evolution is the set all profiles that evolution carries to S.  The

“robustness” or “degree of stability” of S is the size of the smallest invasion that can overturn S. 

The strategies with the largest basin of attraction need not be the ones with maximal degree of

stability.   For example, consider the profiles for a game where each player can play either left or

right. It is conceivable that the evolutionary dynamics carries all profiles (0,1) through (.6,.4) to

an equilibrium at (.5,.5) and all other profiles to an equilibrium at (.8,.8).  Then the basin of

attraction of (.5,.5) would be larger than that of (.6,.4).  But the former equilibrium could be

upset by an invasion of right players comprising ten percent of the population, whereas the latter

would require an invasion of 20%.

 Which is a better explanation for our being in a particular state S, the observation that S

has the largest basin of attraction or the observation that S has the largest degree of stability?  

The best explanation for our being in S would seem to be the observation that S is where we are

expected to be. The basin of attraction would only be a good explanation if we thought that every

initial distribution of strategies was equally probable and that evolution stopped as soon as an

equilibrium was reached.  In fact, however, neither of these conditions is plausible.  First, if we

assume that each player starts with a randomly selected strategy, then the equal initial
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distributions are much more likely than the unequal ones.  Second, as was noted previously, it is

not reasonable to suppose that offspring never differ from their parents in the biological model or

that there are never “accidental” strategy shifts in the social modal.  In either model, mutations

continually threaten the status quo.  Under these conditions’ one would expect the length of time

that a population spends at any stable point to correlate with the number of mutants required to

upset it.  So our being in a particular state is best explained by the degree of stability of that

state.

2.4. Interpersonal Comparisons and Asymmetry

The evolutionary dynamics and the conditions on payoffs characterizing equilibria

discussed above all seem to require that payoffs be interpersonally comparable. According to the

dynamics described in section two above, the growth or decline of a particular strategy under

non-equilibrium conditions depends on comparisons between the payoffs to players who have

adopted that strategy and those who have adopted others.6  According to the solution concepts

described in section three, the achievement of equilibrium depends on comparisons between the

payoffs of natives and invaders. When our concern is biology, and payoffs are just measures of

reproductive success, this is quite appropriate.  When our concern is culture, however, we should

be a little more wary.  It is common to regard the payoffs of these games as utilities, and the

questions of whether interpersonal utility comparisons are meaningful and measurable are

notoriously vexed. 

Those writing about evolutionary games who bother to discuss the issue typically deny

that their framework requires interpersonal utility comparisons.7  One understanding that might

make this possible is that all the references to payoffs of others in a given environment are

understood counterfactually as the payoffs that one would oneself get in that environment, if one

adopted the other’s strategy.  Thus, for example, in the replicator dynamics Player j is more

likely to adopt i’s strategy when his payoff under his current strategy is less than what he himself

would have gotten had he used i’s strategy.  Equilibrium is achieved when each player “sees”

within the population no strategy that will serve him better. 
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What makes this counterfactual interpretation possible is a special kind of symmetry that

has, until now, been built into our framework. Payoffs to players depend only on the strategies

they and their opponents adopt.  This assumption is what makes our payoff notation coherent. 

V(i,j) is the payoff to any player adopting strategy i against any player adopting strategy j.  It

follows, of course, that exactly the same payoffs are available to all players and one player can

approximate another’s payoff just by adopting her strategy. 

Interpreting payoffs counterfactually in familiar conditions for evolutionary dynamics

and stability raises certain questions.  First, while player i can approximate j’s payoff in a

particular environment by adopting j’s strategy he may not be able to duplicate it, because i’s

playing his current strategy is a part of the environment in which j was acting. Of course if there

are many players, the effect of play against any one opponent on the payoff for the round will be

negligible.  Nevertheless, if we really take seriously the idea that the payoffs are to be interpreted

counterfactually, then, instead of comparing Vi with Vj in the current round, i should compare Vi

with the payoff that a player would get by employing j’s strategy in an environment where one

fewer player uses i’s strategy and one more player uses j’s. Second, the interpretation seems to

render the replicator dynamics less plausible.  As long as we take each player to be influenced by

others’ payoffs, we can imagine that the degree of  j’s influence on i is proportional to the size of

j’s payoffs relative to i’s.  But if we take i to have full knowledge of what his payoff would have

been under every strategy currently represented in the population, it is difficult to see why i

wouldn’t simply choose the highest paying option.  Of course i may realize that others are

reasoning similarly and so the environment will change, but that would seem to provide no

justification for the particular weighting of lower-paying alternatives called for by replicator.  

Similarly, if i knows what his payoff would have been under every strategy currently in the

population, it is difficult to maintain that he doesn’t also know what his payoff would have been

under strategies that are not any longer in the population. So why shouldn’t i choose a strategy

that maximizes his payoff whether it is represented in the population or not?  One might hold

that players do not know what payoffs they would get under various strategies, but rather infer

this by observing the payoffs of others who use them.  But this would require players to know

that the others’ payoffs are the same as they themselves would reap by adopting their strategies. 
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In other words it would require that the players themselves can make interpersonal comparisons.  

 I conclude from all this that the plausibility of standard accounts of evolutionary

dynamics and equilibrium requires that it makes sense for one player to compare his payoffs

with another.  If we are really concerned about the use of interpersonal comparisons it would be

reasonable to adopt an evolutionary dynamic under which each player’s probability of switching

strategies in a given round depends on his own relative payoffs in this round and previous

rounds.  Each player strives to do as well as he can do.  He does so by changing frequently when

he does worse than he has done and occasionally (i.e., at the “mutation” rate) even when he does

as well as he has.  The details could be worked out in a variety of ways.  For example, we could

devise a scheme whereby players weigh payoffs in recent rounds more heavily than those in

earlier rounds when deciding whether current payoffs are low enough to warrant switching

strategies.

It is possible to establish a few properties of equilibria under this kind of “individualistic”

dynamic without knowing how it is specified.  First, such equilibria really do not require

interpersonal comparisons: a population in equilibrium will remain in equilibrium if the payoffs

some of its members undergo monotone transformations.  Stable populations need not get equal

payoffs.  They will form a general nash equilibrium, however, in the sense that each player’s

strategy is a best reply to the configuration of others employed in the population.  For otherwise

the player whose strategy was not a best reply would keep switching (by “self-comparison” and

“mutation”) until he did reach a best reply.  Not every nash equilibrium is stable, however. A

deviation by one player from a nash equilibrium may lead to a deviation by another that leaves

everybody better off than they were originally. Any solution in which each player gets her

maximum payoff is, of course, stable. Indeed, if the dynamic is specified appropriately, any

unique nash equilibrium will be stable. When players have reached such a state, some of them

may initially “remember” higher payoffs. Attempts to recapture this payoff, however, will fail

and eventually the memory will fade. If there is more than one nash equilibrium, the relative

stability of each might be measured, as in the case of the interpersonal dynamics, by the number

of strategy changes needed before the dynamics carries the population away from that state. In

the appendix we note that, for the game with a continuum of players the condition that a profile
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forms a nash equilibrium is the same as the condition that it meets A. So the individualistic

dynamics may not be so different as it appears.

For the most part, I will assume in what follows that interpersonal comparisons of

payoffs are legitimate and adopt the conceptions of evolutionary dynamics and stability that

were discussed above.  In the final class of examples, however, I will consider games that violate

the special symmetry assumption.  Players will be divided into types (privileged and deprived) 

and the payoff to i for playing j will depend on i’s type as well as the strategies of i and j.  For

such games the idea of adopting strategies that others find rewarding seems particularly

inappropriate, and so I will consider solutions that would be reached by the alternative kind of

dynamics.

3.  The Examples

3.1. Suboptimal solutions

Let us now turn to the challenging examples.  The existence of the first class has been noted

from the very beginnings of game theory. These are games with one outcome that constitutes a

solution according to the solution concept appropriate for the intended application and another

outcome that all the players prefer. The most notorious example is the familiar two-person one-

shot prisoner's dilemma.  In this case there is only one nash equilibrium, mutual defection, and

yet both players prefer another outcome, mutual cooperation, that is not an equilibrium at all. 

There are other games in which the unanimously preferred outcome is an equilibrium.  One

example is a version of the Stag Hunt, a game that has recently been commended to our attention

as an important representation of the social contract.  (See [Skyrms, 2001].) Consider the payoff

matrix below.  

Stag Hunt

Stag Hare

Stag 3,3 0,2

Hare 2,0 2,2
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Row and Column each choose between hunting stag and hunting hare.  A successful stag hunt

requires participation from both and provides a payoff that both prefer to a successful hare hunt. 

Success in the hare hunt, however, does not depend on the participation of the other.  If both

choose to hunt hare, it would be futile for either to switch prey.  If both choose to hunt stag, then

either would do somewhat worse by switching prey. Thus, both hare hunting and stag hunting

are strict nash equilibria in the one-shot version of this game. Stag hunting, of course, is

unanimously preferred to hare hunting, but we would expect it to be reached only if each player

is reasonably confident8 that the other will choose to hunt stag.

 Since (stag, stag) and (hare, hare) are both strict nash equilibria in the one-shot stag hunt,

everybody’s hunting stag and everybody’s hunting hare are both equilibria in the strongest sense

in the parallel evolutionary version of the game.  A population of stag hunters will eradicate

small invasions of hare-hunters or mixers under any rule of evolution.  A population of hare

hunters will similarly quash invasions by stag hunters.  Closer examination, in fact, reveals that

the “inferior” equilibrium of hare hunting is more stable than the stag hunting equilibrium.  A

population of hare hunters will overcome stag hunting invaders until the invaders reach two

thirds of the population9, whereas a population of stag hunters will resist invasion by hare

hunters only while the hare hunters comprise less than one third of the population. So, if

solutions to the parallel game are maximally stable equilibria, the parallel evolutionary stag hunt,

like the one-shot prisoner’s dilemma, is game whose solution is suboptimal.

The problem of suboptimal solutions to parallel repeated games can arise even

when the game does not have exactly the stag hunt structure.  Suppose, for example, that the hare

hunter’s chance of success also increases with cooperation, so that the payoff for hunting hare

alone is 1.5 rather than 2. Then we have a “coordination game”:  both players always do strictly

better when they perform the same action than when they perform different actions.  In this case

the hare hunting equilibrium is stable under invasions comprising up to about 57% of the

population whereas the stag hunting equilibrium is stable only under invasions comprising up to

about 43% of the population.  Or suppose that the hare hunters are competing for limited

resources, so that the payoff for hunting hare alone is 2.5 rather than 2.  Then we have a slightly

different game structure: both players always benefit by choosing the same action as their
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opponent rather than a different action, but they also always benefit when their opponent chooses

stag over hare.  In this case the hare hunting equilibrium is stable under invasions up to 80%

compared to only 20% for the stag hunting equilibrium.   All three examples are instances of

what has been labeled (in Sen) “assurance” games because, unlike the PD, the “cooperative”

outcome can be reached if each player has assurance that his opponent will cooperate.  Viewed

as parallel evolutionary games, all three are examples in which another outcome is unanimously

preferred to the most stable equilibrium.

All three games considered above (as well as the PD), satisfy conditions defining what

Bendor and Swistak call "games of cooperation," where hunting stag is considered the

"cooperative" move.  (Bendor and Swistak, 1997) shows that, in two-player repeated serial

games of cooperation under the replicator dynamics, no strategy can resist invasions comprising

more than 50% of the population. If the discount rate is sufficiently low, there are a number of

strategies that approach this maximum possible degree of stability.  One is the celebrated Tit for

Tat, which in this context says "hunt the prey that your opponent hunted the last time you played

him."  More importantly for our purposes, they show that all maximally stable strategies are

"almost nice," which means that they "almost always" achieve the cooperative payoff.  So for

serially repeated games that evolve by the replicator dynamics I have given no examples of

suboptimal solutions. I am not sure whether there are any such examples or not.  In view of the

initial remarks, however, this should not provide much comfort.  For many of the kinds of games

that are most relevant to ethics, it is possible to reach "solutions" in which everybody is worse

off than they might otherwise be.

What exactly is the "challenge" that suboptimal solutions pose to game theoretic

treatments of ethics?   The answer depends on what we take ourselves to be investigating.

Suppose first that we take our subject matter to be genuinely normative. Solutions mark patterns

of  behavior that we really ought to follow. In this case a suboptimal solution marks a situation in

which everybody does the right thing and yet everybody would be better off if they did

something else. There are no limits in principle to the size of the gaps that might arise between

the solutions.  We might find ourselves in a situation in which each of us suffers enormous harm

because we all do A and each of us would gain enormous benefit if we all did B. Even if we
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don't accept the strong connection between duty and welfare espoused by utilitarians, it seems

implausible to suppose that it is right to do A in this case.  For that would imply that morality is

an institution that we would all be better off without. More specifically it would imply that we

would all do better to replace morality with a variation that asks us to depart from morality

exactly in those conditions when we face suboptimal solutions. 

A natural way to meet this challenge is to distinguish between normative concepts for

groups and individuals, and between conditional and unconditional normative concepts.  We are

wrong to do A, but given that the others do A, I am right to do so as well.  These distinctions are

undoubtedly significant and useful in this context.  It is important, however, that making them

does not allow us to evade the serious moral questions that are raised by the class of examples. 

What should I do when faced with a choice between A and B?  To what degree should my choice

be influenced by my expectations about what others will do or by my convictions about what

they should do?  How much credit or blame do I deserve when we do something right or wrong?

Suppose next that we emphasize descriptive interpretations of solutions.  Skyrms, for

example, sees his work as part of a tradition, including Hume and Rousseau, that seeks to

investigate the evolution of existing patterns of behavior or, as he puts it, the evolution of "an

existing implicit social contract" rather than the sort of ideal social contract contemplated by

Rawls, Harsanyi, or Hobbes.  Likewise, Sugden sees himself as showing "that certain kinds of

conventions tend to evolve spontaneously in human society" (p172).   Sugden takes the further

important step of identifying a subclass of these conventions that "acquire moral force," i.e., that

come to be regarded as moral conventions.10  He explicitly disavows a purely normative

interpretation of these conventions.

"It is no part of my argument that the morality that evolves in human society is

the morality we ought to follow.  I am not trying to present a moral argument; I

am trying to explain how we come to have some of the moral beliefs we do." (p

175)

I believe that the game theoretical investigations do have normative import.  It seems
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implausible that a theory that explained exactly how we came to hold the moral beliefs that we

do would have no implications about whether we should act on them.  This thesis, however, is

independent of Skyrms’ and Sugden’s reminders that there is another interesting and important

subject of study.  We might distinguish between “descriptive ethics” and “prescriptive ethics,”

just as P.F. Strawson, a generation ago, distinguished between “descriptive metaphysics” and

“prescriptive metaphysics.”  So let’s assume, for now, that our concern is with the former rather

than the latter.

The identification of suboptimal solutions with morally correct patterns of behavior

seems curious even granting a descriptive interpretation of  "morally correct."  It is easy to

imagine that we might all believe we ought to do A, not realizing that we’d all be better off if we

did B.  It is more difficult to imagine that we would retain this belief on becoming aware of B’s

advantages. One of our general moral beliefs is that it is possible that patterns of behavior that

have become widespread in our society are wrong.  Surely a fascinating part of descriptive ethics

to which game theory might be expected to contribute is the phenomenon of moral change. 

Behavior that was once considered lewd is now viewed as acceptable or entertaining.  Jokes that

were once considered funny are now considered insensitive or racist.  Many like to think that

there has been moral progress.  It seems reasonable to suppose that at least one form of moral

progress consists in moving from one equilibrium to a unanimously preferred one.  Suppose, in

our example above, doing A is a generally accepted norm in some society. It is very easy to

imagine moral reformers successfully urging its members to change: "We should not really be

behaving this way.   We should be trying to establish B as the norm."   It is much more difficult

to imagine moral reformers successfully urging its members to move from B to A.  This property

of irreversibility of change seems to be a hallmark of what we consider moral progress. 

One answer to our questions about suboptimal solutions is suggested in the writings of

Kenneth Binmore.  For Binmore the application of game theory to ethics is a two-stage affair. 

Solutions of the sort we have been discussing are equilibria in the “game of life.”  They indicate

which patterns of behavior it is possible to sustain.  The “game of morals” is the game by which
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we select one among the various equilibria. Binmore’s idea works very nicely for the

coordination games like our stag hunt examples.   Whatever the correct principles of equilibrium

selection turn out to be, it is reasonable to suppose they will choose an equilibrium that benefits

everybody over one that benefits nobody.  It is far less plausible, however, for the cases like the

one-shot prisoner’s dilemma in which the preferred outcome is not an equilibrium.  For

Binmore, defection is the only moral choice in a one-shot prisoner’s dilemma.  Yet for

philosophers like Gauthier and Kurt Baier, cooperation in a one-shot prisoner’s dilemma is 

paradigmatic moral behavior: the prisoner’s dilemma serves to explain how moral rules can be

“advantageous for everyone” while requiring “that some persons perform disadvantageous acts.”

Binmore defends his insistence that equilibria are the only possible candidates for moral

behavior as a consequence of the principle that “ought implies can.”  That argument, however,

overlooks the significant fact that inculcating moral beliefs changes the payoffs, so that behavior

that is not in equilibrium absent moral beliefs, may well be sustainable in the presence of those

beliefs.

The solution to the problem of suboptimal equilibria (or at least to those varieties of the

problem illustrated by the prisoner’s dilemma or stag hunt) favored by Skyrms and others

appeals to correlation of interactions. Players do not play against all opponents in a round of a

parallel evolutionary game or with a random sample of such opponents.  A general theory of

evolution under correlated interactions presents some difficulties (Skyrms, 1994), but particular

cases are straightforward.  On a spatial model ([Nowak and May], [Nowak, Bonhoeffer and

May], [Grim, Mar and St Denis], [Skyrms and Alexander]), players are arranged in a fixed

pattern.  Each player interacts only with its neighbors and considers only its neighbors payoffs

when in deciding whether to switch strategies.  On a social network model (Skyrms and

Pemantle) players are more likely to interact with those with whom they have had previous

beneficial interactions. Spatial models make it more likely that a player will interact with

someone using the same strategy as herself.  With appropriate implementation, social network

models may have the same effect in prisoner’s dilemma and stag hunt games.  Since (cooperate,

cooperate) and (stag, stag) are the better of the two outcomes in which both players use the same

strategy, a sufficiently strong correlation makes it possible for the players to escape the
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suboptimal equilibrium.

The spatial and social network models are certainly suggestive, and they may help to

explain certain patterns of human behavior.  Those interested in applications of moral

philosophy to game theory should be somewhat wary of appeals to correlation, however.  The

spatial models that are so helpful in allowing players to achieve desirable outcomes in games

calling for similar play, like the prisoner’s dilemma and stag hunt, will force them into the least

desirable outcomes in games, like hawk-dove, that call for different play.  More generally,

appeals to correlation, like the appeals to reciprocity by purveyors of serially repeated games,

fail to adequately explain specifically moral features of behavior.  There may be cultures in

which moral norms apply only to those with whom a person has frequent interactions.  In

general, however, we would like an accounts that explain our attitudes towards interactions with

outsiders as well as insiders.  And we’d like accounts that explain why behavior is (or is

perceived to be) morally correct as well as why it happens to be practiced.  In his discussion of

bargaining games, Skyrms remarks cautiously that correlation, among other factors, “is perhaps

a beginning of our concept of justice.”  But, while these factors may explain our behaving in

ways that happen to be just, they do not explain our having the concept of justice that we do.  To

explain that we must, as suggested above, say something about the way we employ moral

rewards and sanctions to change the payoffs of the problematic games. 

3.2. Mixed populations

The second kind of example I wanted to discuss is the phenomenon Skyrms has labeled

the "polymorphic trap."  Skyrms raised the issue in connection with a parallel evolutionary

version of what he calls the cake division game.  A cake is to be divided between two players. 

Each player requests some fraction of the cake. They both get what they request as long as their

requests total no more than the whole cake.  Otherwise, both get nothing.  Skyrms notes that, for

all pairs of fractions (r,1-r) totaling to one, there is some division of the population between

those who request r and those who request 1-r that is evolutionarily stable.  For example,

consider a population of which one-third request 60% and two-thirds request 40%.  The greedy
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players get nothing when they meet each other but they get .6 when they meet a modest.  So their

expected payoff is (1/3) 0+(2/3) .6=.4.  The modest get .4 every time.  Since their expected

payoffs are the same, the relative proportions of greedies and modests will not change. Now

suppose, for example that a small group of players who request 50% tried to enter the

population.  Since they are few in number, they have virtually no chance of meeting each other.

They have a one-third chance of encountering a greedy and a two-thirds chance of encountering

a modest. Their expected payoff is (1/3) 0+(2/3) .5=(1/3)  which is less than both the greedies

and the modests so they get driven to extinction.  Now I suspect that the reason that Skyrms calls

this phenomenon a "trap" is that the equilibrium in which everybody plays “request 50%” is

unanimously preferred to all the polymorphic equilibria (r,1-r).  Recall that in our example all

the players had an expected payoff of .4. If everybody requests 50%, everybody gets .5.  So

everybody does better in the equilibrium (.5, .5) than they do in the equilibrium (.6,.4).  

We have already discussed the problem of suboptimal solutions.  I want to focus here on

the issue of polymorphism itself, so it would be good to use an example where the polymorphic

equilibrium was not suboptimal.  The idea that evolutionary processes might lead to stable mixed

populations has frequently surfaced in both simulations and theoretical accounts of the repeated

prisoners dilemma game.  One example was discussed fifteen years ago in Boyd and

Lorberbaum. Consider the following four strategies: 

TFT: cooperate on the first move and thereafter if opponent cooperated in

previous meeting; otherwise defect.

STFT: defect on first move, play TFT thereafter.

TF2T: cooperate on first move or if opponent cooperated at least once in

last two meetings; otherwise defect.

D: always defect

In a universe of these four strategies, Boyd and Lorberbaum show that there is only one

strongly stable equilibrium, which (assuming the payoffs have the usual "Axelrod" values) is a
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mix of 98.6% TF2T and 2% STFT.   To get the idea of why this is so, compare this mix with

TFT.  In a population that is 100% TFT, TF2T is what is sometimes called a "neutral mutant,”

i.e., it behaves just like the rest of the population, so it can infiltrate freely. Every once in a while

a mutant STFT enters the population.  TFT2T does better against this mutant than TFT does, so

the proportion of TF2T tends to increase relative to that of TFT.   When the ratio of TF2T to

TFT is sufficiently high, the mutant STFT's begin to do better than the TFT's and so the TFT's

are driven to extinction.  Now consider the 98.6% mix of TF2T with STFT.  A TFT who tried to

infiltrate would do worse than the TF2T's because it would do the same as TF2T against the

majority and worse than TF2T against the minority.  It would do marginally worse than STFT

against both the majority and minority. The role of STFT is curious here.  STFT does very badly

against itself, so we would not expect it to predominate in a stable population.  But in small

proportions it becomes a terrific ally of TF2T against TFT.  Notice also that the TF2T/STFT mix

is not really a “trap.”  A homogeneous population playing TFT would get the cooperative reward

of three units in every round.  In the mixed population, STFT exploits TF2T on the first round,

so the former gets a higher payoff and TF2T gets a lower payoff.  But after the first round, both

strategies cooperate forever.  If the discount rate is sufficiently low, their total payoffs approach

those of the homogeneous population.

The idea of diversity in a population as a defense against potential invaders is familiar in

biology, but it seems very odd as an ethical principle.  What would we say about a population in

which 98.6% follow one moral rule and 1.4% follow another rule?  Could this model a kind of

ethical relativism?  It is not likely to illustrate a form of appraiser relativism11, if any such view

could be made coherent.  One would not expect the minority population to judge the majority

according to the minority’s rules: things would become a lot worse for everybody if members of

the majority began converting to their suspicious rule. Perhaps, then, it models agent relativism. 

The entire population understands that the majority should follow their rule (TF2T) and the

minority should follow theirs (STFT). Again, this seems unlikely. If agent relativism has any

plausibility, it is when different standards apply within groups.  Eskimos abandon their aging

parents, while Japanese sacrifice for theirs.  But the standards here apply to interactions that
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occur uniformly.  My odds of interacting with you to play the repeated PD are the same whether

you follow my strategy or the other strategy. Indeed in the repeated PD model there are no

differences among the players except for the strategy that they employ.  So if the strategies were

moral rules they would violate a very plausible principle of universalizability.  People who are

qualitatively identical should be subject to the same rules. The rules that a person follows should

not depend on her mere identity.

 

The Boyd and Lorberbaum example shows that if the strategies available to a population

are limited, a dominant stable equilibrium (indeed the only stable equilibrium) might be a

polymorphic one, in which different players use different strategies.  A simple reply to this

unwelcome observation is possible.  Suppose a dominant polymorphic equilibrium has

proportion p1 playing S1, p2 playing S2, …, pn playing Sn.  Now consider a new kind of player

who adopts a mixed strategy of playing S1 with probability p1, S2 with probability p2,…,Sn with

probability pn.  Among the strategies S1,…,Sn, MIXER behaves exactly like the polymorphic mix

of S1,…,Sn.  Since none of S1,…,Sn can invade the polymorphic mix in small numbers, none of

them can invade the homogeneous population of MIXERs. Thus, when MIXER is added to the

possible strategies S1,…,Sn the homogeneous population of MIXERS is strongly stable.  The

polymorphic population, on the other hand, is now merely weakly stable, because it does not

drive to extinction an invasion of MIXERS.  So, by adding an appropriate mixed strategy, we

can always replace a polymorphic equilibrium with homomorphic a one.  Furthermore the

payoffs to the players will be exactly the same whether they adopt the pure strategy or the mixed

one.

3.3. Mixed strategies 

Our "solution" to the problem of heterogeneous equilibria raises another concern.  To

avoid heterogeneous equilibria, we embraced mixed strategies.  We replaced population mixes

with action mixes.  The idea of adopting a random strategy, however, does not seem appropriate

in moral contexts.  To see the problem more clearly, we focus on a much simpler example than

Boyd and Lorberbaum's–the classical two person PD that we have already discussed under the
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heading "suboptimal solutions.”  

The PD has two important characteristics. First, mutual defection is the only nash

equilibrium. In fact defection dominates cooperation–it is the best reply not only to the other's

equilibrium strategy, but to both of the other's strategies. Second, mutual defection is pareto

inferior to mutual cooperation. A fact that I think has been overlooked or underappreciated in

discussions of the PD is that–unless a special “purity” condition is met--mutual cooperation is

itself not pareto optimal12.  There is a pair of independent mixed strategies that provides both

players with more utility. Consider, for example the PD with the payoff matrix below. 

Impure Prisoner’s Dilemma

Cooperate Defect

Cooperate 2.5,2.5 0,7

Defect 7,0 1,1

The players get two and one half units by cooperating with certainty, which is better than

the one unit they get by defecting.  If they cooperate with probability 3/4 and defect with



Reflections

27

probability ¼, however, their expected payoff is (.75)2 (2.5)+(.75)(.25)(0)+(.25)(.75)(7)+(.25)2(1) 

which is approximately 2.78.

The point is made more vivid in the graph in figure 1 below.  The payoffs achievable by

pure strategies are represented by the four corner points of the concave quadrilateral. If one

player adopts a mixed strategy while the other plays a pure strategy, all of the points along the

lines connecting these points become possible payoffs.  If both players mix all the points in the

interior of this quadrilateral are added, as well as the other crosshatched points northeast of

quadrilateral boundary.  Some of these points are northeast of (R,R) indicating that both players

are better off than they are under certain cooperation.

Students of game theory, of course, are well aware that game solutions often call for

mixed strategies.  The challenge for those who want to apply the theory to moral philosophy is

that moral rules do not.  No moral philosopher could plausibly suggest that we ought to consult a

randomizing device before deciding whether to kill a child or whether to keep a promise13.  Even

in difficult cases like that of Sartre’s patriot, who must choose between helping his invalid
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mother and joining the French resistance, it seems wildly implausible to think that the decision

should be made by a coin flip.  I have suggested elsewhere (see Kuhn) that the lesson to be

learned from this challenge is that moral philosophers ought to distinguish two subjects–a

theoretical one that tells us what we actually ought to be doing, and a practical one that tells us

what we should try to do.  The theoretical subject may be of interest to philosophers, but the

practical subject is the one that should interest all of us.  This view is a form of what has been

labeled indirect morality.  How can we best get the effect of, say, 96% compliance with a rule

for promise keeping?  Surely the best means would not be for each of us to try to keep our own

promises 96% of the time, and try to see to it that others do as well.  It would be much more

efficacious for us each to try with a certain degree of effort to keep all of our promises, and see

to that others do as well.

3.4. Cycles

In the previous examples evolution always carries the population to a state with a single

dominant strategy or to one with a stable mix of strategies.  The next examples are the ones in

which evolution leads instead to a repeating cycle of strategies.  The existence of this 

phenomenon is demonstrated by the Rock Paper Scissors game with the payoff matrix below.

 

Rock Paper Scissors with Evolutionary Cycles

Rock Paper Scissors

Rock 4,4 1,6 6,1

Paper 6,1 4,4 1,6

Scissors 1,6 6,1 4,4

  Figure 2 shows the evolution of a population playing a parallel evolutionary version of

the game under various rules of evolution.  In each case there is a population of 500 players,

initially divided with 400 playing rock and 50 each playing paper and scissors.  The y axis

represents the number of players playing rock.  In the first graph evolution proceeds by the
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replicator dynamics, in the second, it proceeds by proportional failure-induced groping, and in

the third, by discrete failure-induced groping.  In every case, it is obvious that the only

“equilibrium” that is reached is a dynamic one, in which the number of players playing rock

grows and shrinks at regular intervals.  

It should be noted that games like this do not appear to be common.  Figure 3 shows what

happens when some of the parameters are changed.  In the top graph, the payoff for a “tie”
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between two players is lowered from 4 units to 2.5 units.  Under these conditions players do

better by taking turns “winning” and “losing” than by choosing the same strategy.  As the graph

suggests, the oscillations in the population of rocks dampen and we head to a polymorphic

equilibrium in which 1/3 of the population plays each strategy.  In the bottom graph, evolution

proceeds by the replicator dynamics with a zero percent mutation rate.  Without mutation, one of

the three strategies can be driven to extinction and as soon as that happens the “superior” of the

two remaining strategies takes over.  In the case pictured, the solid line tracks the rock

population, the long dashes track the scissors and the short dashes track the paper.  The initial

abundance of rocks causes the paper population to grow and the scissors and rock populations to

shrink. With few scissors to check them, the papers quickly drive the rocks to extinction, at

which point the scissors rebound and drive out the papers.



Reflections

31

The phenomenon of stable cycles is, of course, quite familiar in the population biology of

plant and animal species.  Similarly, if our interests are confined to descriptive ethics, then the

existence of stable cycles is not problematic.  Moral beliefs and attitudes do sometimes appear to

change in a cyclical manner.  Our attitudes towards drug use and sexual promiscuity, to take two

examples, seem to be getting more judgmental in recent years after getting more permissive

through the sixties and seventies.

From the perspective of normative ethics, however, the existence of stable cycles is

somewhat more puzzling.  Those who argue for a return of tighter standards of sexual behavior

do not generally maintain that the looser standards were right in their time, while the tighter

standards were right before then and again now.  They tend rather to call for a return to correct

standards, which have been temporarily forsaken.  As in the case of suboptimal solutions, it is

helpful to distinguish between group and individual concepts of obligation.  It is plausible that

what I ought to do might depend on what others do, and that what they do varies in regular

patterns. When others play scissors I ought to play rock; when others play paper, I ought to play

scissors.    It is less plausible that what we ought to do is to repeatedly cycle though stages during

which the proportion of us making a particular choice goes from high to medium to low and

back. 

One plausible diagnosis of what is going on in cases when moral attitudes change

cyclically is that there is some ideal standard that we are unsuccessfully trying to reach.  When

standards are too strict, we loosen them.  In doing so, we overshoot the mark and standards

become too loose.  Then we tighten them, and the cycle repeats.  This story suggests that cycles

could be avoided if it were possible to add to the set of possible strategies one that directly

expresses the ideal moral standard.  In the case at hand, for example, we might suspect that a

mixed strategy of 1/3-rock, 1/3-paper, 1/3-scissors, if allowed to arise, would eventually

dominate.

This response to evolutionary cycles may sometimes be appropriate, but in this case it is
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not. Figure 4 plots the average payoff in the cyclical rock, paper, scissors game.  The payoff

varies cyclically with the makeup of the population but it never goes below 11/3.  The mixed

strategy, on the other hand, scores exactly 11/3 against every opponent and therefore its average

payoff is 11/3.  Since the mixed strategy never exceeds the average payoff, it will not

successfully invade the cycling population under any of the dynamic rules we have considered. 

Furthermore, a population initially composed entirely of mixers is vulnerable to an invasion by

any single pure strategy.  The invaders would do exactly as well against the mixers as the mixers

do and they would do better than the mixers against themselves.  Once the pure invaders reached

a critical mass, of course, they would be vulnerable to attack by the pure strategy that beats

them.  The cycles would begin.

The general normative lessons to be drawn from the existence of stable cycles in

evolutionary games are unclear.  There are, however, some similarities between this example

and the initial examples of suboptimal solutions. Suppose the evolutionary game is played by a

fixed population of players who shift from strategy to strategy.  If any of the three strategies

were played by all players at all times, each player would achieve a higher payoff than the

average she achieves over a cycle in the cyclical outcome. So, just as players defecting in a

prisoner’s dilemma have reason to try to move to state of universal cooperation, players locked

in a cyclical rock paper scissors game have reason to try to move to a state in which all play the

same strategy. As in the prisoner’s dilemma, the state to which they have reason to move is not

evolutionarily stable. This is exactly the kind of situation in which we might expect moral
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attitudes to change the payoffs in such a way that the preferred outcome can become stable. 

There is a sense in which the cyclical rock-paper-scissors examples are normatively even more

problematic than the prisoner’s dilemma.   In a prisoner’s dilemma, we can ensure cooperation if

players are moved by appeals to universalizability.  When somebody considers defection we ask

“What if everybody did that?”   In the cyclical rock-paper-scissors game, such appeals are otiose. 

Suppose we are all playing rock.  I can do better by switching to paper.  You try to dissuade me

from that choice by asking “what if everybody did that?”  I can reply that none of us would be

any worse off than we are now.  A successful argument against my switching to paper requires a

broader generalization principle.  Any reasoning that makes it proper for me to switch to paper

now will, after enough of us have made the switch, make it proper for others to switch to

scissors, and the net result of all these changes will be harmful to everyone. This example should

be of particular interest to utilitarians.  If prisoner dilemma situations lead philosophers to

abandon act utilitarianism in favor of utilitarian generalization, cyclic rock-paper-scissors

situations should lead them to abandon common forms of utilitarian generalization. 

  

3.5. Inappropriate Discrimination

The final class of examples is one that has been touted as a successful application of

evolutionary game theory to ethics.  I want to argue that it merits a closer look.  Consider the

Chicken game with the payoff matrix shown below

Chicken

Hawk Dove

Hawk 0,0 6,2

Dove 2,6 3,3

  On the interpretation relevant for present purposes, Row and Column are equally strong

players who would benefit equally by the possession of a single indivisible object.  They can

choose an aggressive strategy (hawk) or a submissive one (dove).  When one chooses hawk

while the other chooses dove, there is no fight and hawk immediately gets the object with
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probability one.  If they both choose dove, there is no fight and each gets the object with

probability one half (after a slight delay).14  If they both choose hawk each has a one half chance

of obtaining the object, but that chance for gain is outweighed by the fight required to obtain it.

It is not difficult to show15 that the strategy that forms a nash equilibrium with itself in

this game is the strategy of mixing hawk and dove in the ratio sixty-forty. Now consider the

parallel evolutionary version of this game.  To simplify discussion, assume that mixed strategies

are not available and there is a continuum of players. (The n-player game can be understood as

an approximation to this game.) Then the only profiles that could meet any of the solutions

discussed are those in which 60% play hawk and 40% percent play dove. Under winner

imitation, s is highly unstable.  If a single dove enters the population, the hawks will do slightly

better than the doves, and so a fraction of the doves will become hawk.  A single mutant dove

will then convert a similar fraction of the hawks to doves and the population will cycle rapidly

between mostly-hawk and mostly-dove.16  Thus, there can be no universally stable populations in

this game.   The sixty-forty profile does, however, meets the MS condition.  Under the replicator

dynamic, therefore, the population will evolve to that state. Each player gets an average payoff

of 2.2, which is even less than he would get if they all played dove.

 Several authors take this game to illustrate Hobbes’ dictum that a state of nature is a

state of war. (Recall  Hobbes’ characterization that “..WARRE, consisteth not in Battell onely, or

the act of fighting, but in a tract of time wherein the WILL to contend by Battell is sufficiently

known;ÿ”).  For Hobbes, escape from this state of war is possible only with the emergence of a

“sovereign” with power to enforce contracts.  The more recent contention, which I want to

reexamine, is that evolutionary game theory reveals a more plausible means of escape. 

The clearest and most detailed expression of this idea is found in Sugden.  Sugden argues

that the chicken players may avoid their hawkish equilibrium if they become aware of an

asymmetry that recurs in their meeting situations.   Let us suppose, for example, that in some

(non-zero) proportion of the meetings the desirable object is already in possession of one of the
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players. We call the resulting game asymmetric chicken.  The one who has the object is

possessor and the other player is claimant. Players can now consider strategies that are

conditional on the role they find themselves playing.  For example (h,d,h) is the strategy of

playing hawk if possessor, dove if claimant, and hawk if neither.  The information about a

population needed to determine a player’s average payoff can be given by a triple (p1,p2,p3)

where p1, p2 and p3, are the proportions of the population playing hawk if possessor, claimant,

and neither.  Let us therefore extend previous usage and call such triples strategy profiles.

Consider first the case of the balanced asymmetric game--each player has a fifty-fifty chance of

playing the role of possessor in the asymmetric meetings.   In that case the special symmetry

assumption that characterizes our framework still holds.  The payoffs to any player adopting the

(i1,i2,i3) conditional strategy against any player adopting the conditional (j1,j2,j3) strategy are then

the same, and so it makes sense to talk about the payoff to strategies rather than players.  It is

easy to show  that (1,0,.6), (0,1,.6), and (.6,.6,.6) are the only profiles in the associated one-shot

game that form nash equilibria with themselves, and that the first two of these satisfy condition

MS. (Details are given in the appendix.) Call the strategies of the first set “retention”

strategies–resources are used to try to retain what one has and those of the second set the

“procurement” strategies–resources are used to try to procure what one lacks. 

By noticing an asymmetry that is present in many of their meeting situations, the players

are able to escape the hawkish equilibrium that appeared to have trapped them.  It might seem a

little embarrassing that there are now two equally stable equilibria, the one with retention and the

one with procurement.  There are a couple of considerations, however, that favor the former. 

First there is the psychological phenomenon that people place greater value on an object when it

is in their possession than when it is not.  This phenomenon has been confirmed experimentally

on several occasions.( See [Knetsch  and Sinden],  Knetsch and [Samuelson and Zeckhauser].)

Second there is the commonsense strategic observation that, in battle over a good, the odds of

success and the cost of battle both favor the current possessor.  Each of these factors would tend

to change the payoffs of the chicken game in a way that increases retention’s degree of stability

and decreases procurement’s.  This may explain common conventions that allocate property to

possessors.  Possession, as Sugden reminds us, is nine points of the law.
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All this reasoning was done under the assumption that each player has an equal chance of

playing either role in his asymmetric meetings.  A similar result can be obtained for the

unbalanced game. Suppose that some players (called them “privileged”) have a greater than 50%

chance of being possessor in their asymmetrical meetings.  Then there must be some others (call

them “deprived”) who have a less than 50% chance.  Under these conditions our special

symmetry assumption will be violated.  A privileged player using retention will have a greater

expected payoff against an opponent playing retention than a deprived player using retention

would.  A deprived player using procurement will have a greater expected payoff against an

opponent playing procurement than a privileged player would.  We argued above that when the

special symmetry assumption is violated, there is little plausibility in employing the usual kinds

of evolutionary dynamics and solution concepts, and we ought rather to consider dynamics in

which each player compares his current payoff with those he received before.  Let us examine

how a population of uneven privilege fares under such a dynamic.

Suppose that the population starts from a position in which no asymmetry is recognized. 

As we have seen, they will evolve to the “state of war” within which hawks comprise 60% of the

population.  Now suppose a group of players begin notice the frequent asymmetry and begin to

adopt, say, retention.  The average payoffs to all the deprived players will begin to decrease

since they are now facing more opponents (in the asymmetric situations) playing hawk.  Any

switch to hawk or procurement will leave these players even worse off, so they will tend to

switch to dove or retention. The average payoffs to privileged players, on the other hand, will

begin to increase since they are facing more doves than before.  Any “accidental” switches to

hawk or retention, however, will be rewarded and any accidental switches to dove or

procurement will be punished.  So the population will move towards one in which the privileged

play hawk or retention and the deprived play dove or retention. If a privileged or deprived player

is maximally privileged or deprived (so that he plays the same role in every asymmetric

meeting), then there is no difference in the asymmetric meetings between playing hawk and

retention or between playing dove and retention.  Otherwise, any player under these conditions

benefits by switching from his unconditional strategy to retention.  As long as the dynamics
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permits the deprived to forget the higher average payoffs that they had gotten in the state of

nature, we would expect retention to be stable.  Marx’s notion that members of the exploited

class have “nothing to lose but their chains” turns out to be false in the short term.  The deprived

who decide not to adopt retention make things worse for themselves.  The same argument, of

course, shows that procurement is stable.  As long as we don’t adjust relative payoffs, the

population will move towards whichever conditional strategy first appears within it.  The

appendix contains a more fastidious exposition characterizing all the nash equilibria and stable

points of the unbalanced asymmetric chicken game.

The question to which I would like to draw attention is whether the most stable solutions

to the unbalanced asymmetric property division games are the morally correct ones.  One

manifestation of this question concerns the appropriateness of the universal retention strategy

when half are highly privileged and half are highly deprived.   But the question arises even more

forcefully when we consider that many other asymmetries are likely to be available to the

players facing the good-acquisition problem.  Suppose, for example, that all the players are

either blue or green.  Since a player can’t choose his color, color is not “heritable” when the

dynamics is understood as representing cultural evolution.  Then half of all encounters will be

between players of different colors.  So the strategy “hawk if blue, dove if green” will be an

evolutionarily stable strategy.  This strategy clearly discriminates against greens. Any conflict

between a blue and a green is settled in favor the blue.  Yet, once the strategy becomes

dominant, the greens must go along–to play hawk against a blue in this environment would be

self-destructive.

The recognition of any asymmetry makes possible conventions that allow us to avoid

Hobbes’ “threat of battell,” but some of these conventions seem to do so in an unfair way.  What

makes the convention that favors the possessor a “just” convention but the convention that

favors the blue player unjust?  We have seen that certain facts about psychology and strategy

give the convention favoring possessors an especially high degree of stability.  But this can’t be

what makes it right.  For if the blues tended to be physically stronger than the greens (as they
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might if “blue” and “green” referred to males and females) then the policy that discriminates in

favor of blues would get a similar boost in stability, with no concomitant boost in legitimacy. 

The problem of choosing which asymmetry to employ is, in game-theoretic terms, a coordination

problem.  It is frequently suggested that factors like salience and clarity determine solutions to

such problems. It is difficult to contend, however, that the asymmetry of possession is more

salient or clear-cut than the asymmetry of color.  One might think that the asymmetry of

possession is favored because it is more pervasive.   We know, after all, that the color

asymmetry is present in only 50% of the meetings in a hawk-dove game.  Whether this

observation is accurate depends on what we mean by a “possessor.”  If being in possession of

something requires touching it, then it would seem that the possession asymmetry is present in

far fewer than 50% of property-assignment games.  No matter how pervasive the possession-

asymmetry is, however, it can’t be mere pervasiveness that makes possessor-discrimination right

and color-discrimination wrong.  A convention based on color-asymmetry would be wrong even

if it applied only to cases in which there was no possession-asymmetry.  And a convention based

on, say, foot length asymmetry, would be wrong even if such asymmetry were present in 100%

of meetings.

The existence of equilibria in hawk-dove games based on inappropriate discrimination is

another example that deserves attention from those who wish to apply ethics to game theory. 

That is not to say there is anything fallacious about the game theoretic reasoning itself.  Stable

patterns involving similar discriminations are quite familiar, whether it be by sex among Taliban

in Afghanistan or by antler size among moose in Maine.  The question is why, as long as initial

distributions are sufficiently equal, discrimination based on possession is regarded as morally

proper, while discrimination based on color is not.

One possible answer to this question appeals to the same ideas as the earlier discussion of

suboptimal equilibria.  Morality is an institution whereby psychological rewards and

punishments can change the payoffs in a game.  This change can create an equilibrium where

none existed before (as in the prisoner’s dilemma example) or it can buttress (i.e., make more
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stable) an already existing equilibrium.  What makes morality possible is our peculiar ability to

make each other feel guilt and pride at little or no cost to ourselves.  It is not true, of course, that

one person can cause any other to feel guilt or pride whenever he wishes.  It is rather that, by an

appropriate moral education, we can collectively program ourselves to feel guilt or pride

whenever we become aware that certain general conditions obtain.17  Furthermore, we are aware

of this ability we have and of its usefulness.  We all campaign for various curricula that might

guide our moral education.  Just as in electoral campaigns, our support depends both on how we

and those we care about would fare were the curriculum adopted and on the prospects that others

will support it.

Consider now how players in the hawkish equilibrium in which no asymmetry is

recognized might evaluate curricula that inculcate conventions based on color and on possession. 

More specifically, let us suppose that goods are distributed so that half of all meetings involve a

possession asymmetry and each player is possessor in half of his asymmetric meetings.  Then a

possession convention nets each player 2.2 units in symmetric meetings and 4 units in

asymmetric meetings, for an overall expectation of 3.1 units.  This represents a considerable

improvement over the 2.2 units expected in the state of nature equilibrium.  Under a color-based

convention, the favored players will expect 2.2 units in symmetric meetings and six units in

asymmetric meetings, for an overall expectation of 4.1 units.   The unfavored players, however

will receive only 2 units in asymmetric meetings and their overall expectation will therefore be

only 2.1 units, which is less than they get in the state of nature.  Thus every player might

support, and expect all others to support, a curriculum to inculcate a convention based on

possession.  Nobody could expect similar support for a curriculum to inculcate a convention

based on color.  

The results of this line of thinking are similar in some ways to the results of John Rawls’

choice behind a veil of ignorance.  For Rawls inequalities are permissible if and only if they

result in everybody’s being better off than they are in a state of equality.  In our hawk-dove game

the state of nature is a state in which we are all equally miserable.  Inequalities are permissible
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only if nobody is worse off than in the state of nature.  For Rawls, the device that ensures the

elimination of the bad inequalities is the veil of ignorance. Since I might be disadvantaged

myself, I cannot support an institution that makes the disadvantaged worse off.  Here the players

have full awareness of their circumstances and inequalities are limited by the need for consensus. 

It is because I know that others would be disadvantaged that I know a proposed curriculum will

not get the necessary support.

The campaign and election metaphors suggest a retrenchment from the evolutionary

framework within which this discussion has thus far been conducted. It may be possible to resist

this suggestion.  The selection of a component of moral education could itself be viewed as an

evolutionary game that accompanies and modifies the game modeling the behavior it aims to

regulate.  The result would be a compound game played as follows. A strategy for each player is

a move (possibly mixed) in both the behavioral game and the regulatory game.  A move in the

regulatory game consists of a decision to advocate the color asymmetry, the possession

asymmetry or neither.  In each round every pair of players plays the behavioral game and each

player also makes a move in the regulatory game. Strategies are updated by the appropriate

dynamic, with payoffs computed from the behavioral game in the usual way.  If sufficiently

many players make the same move in the regulatory game, payoffs are updated appropriately

before the next round.  

It is not obvious that an evolutionary view of regulation can account for the superiority of

retention to color discrimination as successfully as the picture of norms chosen at one shot by

agents who understand the effects on themselves and others of all candidates.  If we rule out

hypocrisy, so that advocacy of a convention requires adherence to it, then advocating an

equilibrium different than one currently practiced will be costly. Potential reformers will be

driven extinct. Even if we don’t rule out hypocrisy, it is difficult to see how the reformer benefits

by his advocacy. There are, however, several considerations that may provide hope for an

evolutionary account.  Advocacy is typically a public action, so a player’s moves in the

behavioral game might be conditioned on her opponent’s moves in the advocacy game.
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Furthermore, advocacy often causes others to expect that the advocate will adhere to the

convention he advocates.  As Sugden has observed, it is part of our psychological constitution to

suffer when others are hurt by false expectations about our behavior. So it may turn out that

success comes from non-hypocritical advocacy and behavior that assumes non-hypocritical

advocacy on the part of one’s opponent.  Furthermore, once a position is widely advocated, the

advocacy itself is probably at least weakly rewarded.  As long as there are no countervailing

factors, this may be enough to push a common move in the regulatory game across the threshold

of efficacy.   I hope to explore such possibilities in future work.

 

Appendix:  Proofs of Claims.

1.For G an evolutionary game with a continuum of players and s a strategy profile of G, let Gn

be the n-player version of G and sn be a closest approximation to s in Gn.  There are games G 

with an equilibrium s such that: a) the replicator dynamics carries sn to s and s is stable, 

b)replicator carries sn to s and s is not stable, and c) replicator does not carry sn to s.

Proof.  Consider the following two-player game matrices.

A B
A 0,0 1,1
B 1,1 0,0

A B C
A 0,0 1,1 0,1
B 1,1 0,0 0,1
C 1,0 1,0 2,2

A B
A 1,1 0,0
B 0,0 1,1

Let G1, G2, G3 be parallel evolutionary games with a continuum of players under the replicator

dynamics based on these matrices and let G1
101, G

2
101,G

3
101 be versions of these games with 101



Reflections

42

players.  Then F=(.5,.5) is a stable equilibrium of G1 and an unstable equilibrium of G3.

F101=(50/101,51/101) is a closest approximation to F.    In G1 replicator carries F101 to F.  In  G3

replicator carries F101 away from F to the more distant equilibrium (0,1).  In G2, replicator carries

(50/101,51/101,0) to the unstable equilibrium (.5,.5,0).  

2.There are parallel evolutionary games with strategies meeting condition A but: neither MS nor

BL, MS but not BL, and BL but not MS.

Proof.  Consider the following two-player game matrices:

A B
A 0,0 0,0
B 0,0 1,1

A B C
A 1,1 1,1 1,1
B 1,1 0,0 2,2
C 1,1 2,2 0,0

A B
A 1,1 0,1
B 1,0 2,2

Strategy A is a weak nash equilibrium in all three games.  In the first one it satisfies neither MS

nor BL, in the second it satisfies MS but not BL, and in the third it satisfies BL but not MS.

1. Let G be a two person game with payoffs VG(i,j) for moves i,j e{1,…,k}.  (s,s) is a nash

equilibrium of G if and only if V(s,s)³V(j,s) for all pure strategies je{1,…,k}.

Proof.   Suppose that (s,s) is a nash equilibrium. Then V(s,s)³V(s¢,s) for all strategies s¢.  In

particular this holds whenever one of the weights in s¢ is one and the others are all zero, i.e.,

V(s,s)³V(j,s) for all je{1,…,k} as was to be shown. Conversely, suppose V(s,s)³V(j,s) for all

je{1,…,k}.  Since, for any s¢, V(s¢,s) is a mix of these V(j,s), V(s,s)³V(s¢,s) for any strategy

s¢, as was to be shown.
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2.Let G be as above and let R be a “round-robin” version of this game with a continuum of

players. Each player chooses a pure strategy i and plays G with each of the others one time and

gets a payoff VR (i,s) equal to the average of the payoffs from each encounter. Note that

s=(S1,…,Sk)  can be regarded as either a mixed strategy in G or a profile in R. Since there are a

continuum of players, a single encounter has no effect on the average, and so VR (i,s)= VG (i,s).

a. (s,s) a nash equilibrium of G implies s a nash equilibrium of R.

Proof.  Suppose s=(S1,…,Sk) and (s,s) a nash equilibrium of G. Let J be the set of all ie{1,…,k}

such that Si ¹0. Then, for all j, in J, VG(j, s)=VG(s,s), for otherwise we could adjust the weights

S1,…,Sk in s to obtain a s¢ for which VG(s¢,s)>VG(s,s).  Suppose s is not nash in R. Then there

is some player playing strategy j who could benefit by unilaterally switching to j¢, i.e., 

VR(j¢,s)>VR(j,s).  Since jÎJ and VR=VG,  this implies V(j¢,s)>V(s,s), which, by 1 is impossible. 

b. Then s a nash equilibrium of R implies (s,s) a nash equilibrium of G.

Proof. Suppose s=(S1,…,Sk) is a nash equilibrium of R.  Let J be the set of all ie{1,…,k} such

that si ¹0. Then, for all j,j¢ in J, V(j, s)=V(j¢,s), for otherwise the strategy that did worse would

benefit from switching. Since s is composed of members of J, it follows that V(j, s)=V(s,s) for

jÎJ. For jÎJ and j’ÏJ, V(j, s)³V(j¢,s), for otherwise j would benefit from switching to j’.  Hence

V(s,s)³V(j,s) for all pure strategies j, je{1,…,k}, and so by part 1 above, (s,s) is a nash

equilibrium of G

3)In the balanced asymmetric chicken game each of the strategies (1,0,.6), (0,1,.6), and (.6,.6,.6)

forms a nash equilibrium when paired with itself.

Proof.  Consider an arbitrary mixed strategy p=(p1,p2,p3), of playing hawk with probability p1 as

possessor, p2, as claimant and p3 as neither.  V(p, (1,0,.6) ) = 

.5rG(6p1+3pG1)+.5rG(2pG2)+r(6p3.4+2pG3.6+3pG3.4) where r is the probability of an asymmetric meeting. 
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By arithmetic, V(p, (1,0,.6)=rG(1.5p1+pG2+1.5)+r(2.4). This expression reaches its maximum value

whenever p1=1 and p2=0, and so (1,0,.6) is a best reply to itself. A similar argument establishes

that ((0,1,.6), (0,1,.6)) is a  nash equilibrium.  Now consider (.6,.6,.6).  Since (.6,.6) is a mixed

equilibrium in the symmetric chicken game, V(s,.6) has the same value v for every strategy s in

that game.  Since V(p,(.6,.6.,.6)) is a mix of V(p1,.6), V(p2,.6) and V(p3.6), it follows that

V(p,(.6,.6,.6)) =v for every conditional strategy p.  Thus (.6,.6,.6) is a best reply to itself. 

4) In the balanced asymmetric chicken game no strategies other than those mentioned above

form a nash equilibrium when paired with themselves.

Proof. Suppose that p=(p1,p2,p3), were another.  If p3<.6 then (p1,p2,1) would be a better reply to p

than p itself.  Similarly if p3>.6, then (p1,p2,0) would be a better reply to p.  Hence p3=.6.  Now

we examine p1 and p2. Because p is not among the strategies mentioned in 1, at least one of these

strategies must be different than .6.  Without loss of generality we may suppose it is p1. If p1<.6,

then any best reply to p has 1 for its second component, so p=(p1,1,.6). Any best reply to this has

0 as its first component, so p=(0,1,.6) which was listed in 1 after all. By similar reasoning, if

p1>.6 then p2 must be 0 and p1 must be 1, so p=(1,0,.6) which, again, was listed in 1.  So the

supposition that p was not listed is false and there are no more strategies that form nash

equilibria with themselves

5)In the balanced asymmetric chicken game the profiles represented by (1,0,.6) and (0,1,.6)

satisfy condition MS, but the profile represented by (.6,.6,.6) does not.

Proof. Let s be the (unique) profile represented by (1,0,.6).  Take any (pure conditional) strategy

j=(j1,j2,j3).  If j1¹h or j2¹d then V(s,s)>V(j,s).  If j1=h and j2=d, then V(s,s)=V(j,s), but (since

V(.6,h)>V(h,h) and V(.6,d)>V(d,d) in the original hawk-dove game) V(s,j)>V(j,j).  The proof

for (0, 1,.6) is similar.   To see that (.6,.6,.6) fails to satisfy MC, note that, because every strategy

scores 2.4 against .6  in the chicken game, V((.6,.6,.6),(.6,.6,.6))=V((.6,.6,.6), (1,0,.6)). V((1,0,

.6),(1,0,.6)) is a mix of 2.4 with  a fifty-fifty mix of  six and 2, and so it is greater than
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V((.6,.6,.6),(.6,.6,.6)). 

6)In the unbalanced asymmetric chicken game the profiles (1,0,.6), (0,1,.6) and (.6,.6,.6) are

generalized nash equilibria.

Proof. In the unbalanced game we can no longer identify a player j with her strategy triple

(j1,j2,j3) because her expected payoff now depends on whether she is privileged or deprived as

well as the strategy she employs.  So we adopt the notation j=(I,j1,j2,j3) where I=P (for

“privileged” or D for “deprived”) to denote a player j with status I and strategy triple (j1,j2,j3). 

Let j=(I,j1,j2,j3) be any member of the population with profile s=(1,0,.6).  We write V(j,s) for the

payoff to j in the population with profile s. (Note that the status of j and the strategies of j and s

are sufficient to determine this payoff.)  It is required to show that, for every strategy j¢, V(j,s) ³

V(j¢,s).  V(j,s)=r(p6+pG2)+rG.6 where p is the probability that j is possessor in the asymmetric

meetings and r is the probability of an asymmetric meeting.  Note that the value of p (and hence

that of V(j,s)) depends on whether j is privileged or deprived.  Now take any j¢¹j such that j¢ has

the same status as j.  If j¢ differs from j only in the fourth coordinate then V(j¢,s)=V(j,s). 

Otherwise, either j¢1<1 and j¢2³0 or j¢1£1 and j¢2>0.   Hence V(j¢,s)=r(ph+pGk)+rG.6, where either

h<6 and k£2 or h£6 and k<2.  Either way, V(j¢,s) < V(j,s), as was to be shown.  The proof for

(0,1,.6) is similar.  The claim that (.6,.6,.6) is nash follows immediately from the observation

that, for all strategies j and j¢, V(j,(.6,.6,.6))=V(j¢,(.6,.6,.6). 

7)There are no nash equilibria in the unbalanced asymmetric chicken game other than those

mentioned above.

Proof. Suppose that there were another represented by (p1,p2,p3).  If p3<.6, then any member

j=(I,j1,j2,j3) of the population with j3=d could improve his payoff by switching to (I, j1,j2,h), and if

p3>.6, then any member  j=(I,j1,j2,j3) with j3=h could improve her payoff by switching to

(I,j1,j2,d). Hence p3=.6.   Now suppose p1=0, i.e., no players in the population play hawk when

possessor.  Then any players with a strategy of the form (I,j1,d,j3) would benefit by switching to
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1Here I have in mind Braithwaite and, more recently, John Rawls, David Gauthier, Brian
Skyrms, Peter Danielson,  and Peter Vanderschraaf  among others. 

2 Here I have in mind John Harsanyi, Robert Sugden, Kenneth Binmore, Jonathan Bendor and
Piotr Swistak among others.

3It makes sense, that is, as long as attention is restricted to asexual reproduction.  Even for
biological applications, the replicator dynamics has important limitations.

4See Börgers and Sarin. The learning model investigated there originates in Bush and Mosteller
and Cross. In Börgers and Sarin the payoffs are assumed to lie strictly between 0 and 1 and
absolute payoffs are used to compute the new mix. It is shown that under these conditions that
the expected weights in each player’s mix evolve according to replicator dynamics.  Fascinating
as this observation is, it provides no justification for assuming that the replicator dynamics
describes the evolution of the proportions of the population playing particular strategies in games
modeling cultural evolution.  It is not clear how to characterize the evolution of a population of
mixers, each of which itself evolves by replicator dynamics.

5 For example, that if the population has n members for odd n and replicator calls for a profile
((n-1)/2n, (n+1)/2n) to be replaced by the unattainable (.5,.5) then the population remains as it
was, and that if a dynamics causes a population to cycle between “adjoining” profiles ((n-1)/2n,
(n+1)/2n), and ((n+1)/2n, (n-1)/2n), then these profiles be considered equilibria.

6 The observation that one can show that these dynamics arise under various stories about the
procedures by which players actually change strategies does render them independent of
interpersonal comparisons.  In the Bendor and Swistak characterization of the replicator

(I,j1,h,j3), so there can be no such players and p2=1.  But (0,1,.6) was already listed so p1¹0. 

Similar arguments establish that p1¹1, p2¹1 and p2¹0. Because (p1,p2,p3) is not among the

profiles mentioned above, either p1 or p2 must be different than .6.  Without loss of generality we

may suppose it is p1. If p1<.6, then,  any player with a strategy of the form (I,j1,d,j3) would

benefit by switching to (I,j1,h,j3).  There must be such a player because p2<1.  If p1>.6 then any

player with a strategy of the form (I,j1,h,j3) would benefit by switching to (I,j1,d,j3).  There must

be such a player because p2>0. We have now shown that p1 is neither equal to .6 greater than .6

or less than .6.  Hence the supposition is false and there are no other equilibria.

Notes
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dynamics, for example, each player must know his own relative payoff Vi/V, which implies that
his payoff is comparable to those of the others.  This is to be expected, since the replicator
dynamics itself requires such comparisons.  A strategy whose frequency is decreasing under this
dynamic might well begin to increase if the payoffs to a player employing it were to be doubled
relative to the others.     

7 For example, Sugden  (pp14-19) writes “Utility indices, as I shall interpret them, are intended
only to represent each individual’s preferences over sequences of outcomes; they are not to be
understood as conveying any judgements about the relative intensity of different individuals’
wants.”  It is not clear what dynamics Sugden has  mind, but it does seem plausible that he is
construing his solution conditions (A and MS) counterfactually. 

8 In particular, a player who is maximizing expected payoff will hunt hare only if 3p>2, where p
is the probability that she assigns to the other hunting hare, and so the preferred equilibrium will
be attained only if each assigns a probability of at least 2/3 to the other hunting hare.

9 The calculation is similar to the previous one.  The payoff to a native hare hunter in a
population with proportion p of stag hunters exceeds the payoff to the invaders as long as 2>3p,
i.e., as long as p<2/3. 

10 They are  those that are widely followed in a group and that have the property that a follower
always benefits from others' following. 

11 The distinction between appraiser and agent relativism is from Lyons 

12 The condition is (T1-R1)(T2-R2) < (R1-S1)(R2-S2), where Ti, Ri, and Si are the reward, sucker
and punishment payoffs for player i.  The condition is discussed in [Kuhn and Moresi] and
Kuhn.

13 A referee pointed out that such appeals to randomizing devices do seem to be found in the
scriptures.  There are several biblical references, for example, to “the Urim and the Thummim”
which appear to be two small, similarly shaped stones that could be placed in the breastpiece of a
priest, and which could be “consulted,” perhaps by drawing one blindly from the pair.  Such
consultation was used to determine the guilt or innocence of an individual and to make some
other binary moral decisions.  Similarly, there are many biblical references to making important
moral decisions by casting of lots.  In both cases, however, the decision making apparatus seems
to be regarded, not as a device for randomizing, but as a method of learning God’s will.  For
example, in Pr 16:33 we have “The lot is cast into the lap but the decision is wholly from the
Lord.”  The choice is determined even though it may appear random to us.  A better
counterexample from more recent literature can be found Taurek, where the suggestion is made
that if I must choose between saving the inhabitants of island A or the inhabitants of island B (all
of whom are strangers to me), I ought to base my decision on the flip of a coin (regardless of the
populations of A and B), thus affording every person an equal chance of survival.  I suspect that
utter implausibility of this conclusion (and the skill with which Taurek defended it) was part of
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the reason that the paper has received so much attention.

14 If the value of the object is four and the value of avoiding the fight is two, the value of
avoiding the delay is one.  Nothing important in what follows would change if we drop the
assumption that there is a delay in dove-dove interactions over dove-hawk interactions, but the
equilibrium could be less “hawkish” and the state of nature equilibrium could produce payoffs
greater than the dove-dove payoffs.  Thus the delay makes the situation more dramatic. 
Furthermore, it is not unrealistic.  The mechanism by which the good is “distributed” is much
more obvious in the case of dove-hawk interactions than in the case of “dove-dove” interactions. 
   

15 Since the best reply to hawk is dove and the best reply to dove is hawk no pure strategies can
meet this condition.  At the mixed equilibrium where hawk is played with probability p, hawk
and dove must get equal payoffs.  So 0p+6pG=2p+3pG, and so p=.6, as was to be shown.   

16 A similar argument applies to a population s of players who mix at 60-40. Suppose a single
mutant d playing dove invades.  Since s  is nash V(d,s)=V(s,s), and the mutant survives under
winner imitation.  Now suppose a single mutant hawk h invades.  Since V(h,d)>V(s,s), the
invader will do slightly better than the natives and many doves will switch to hawk.  Now a
single mutant dove will convert many hawks to doves and the population will cycle as above. 
All this suggests that winner imitation leads to instability when there are mixed strategy nash
equilibria in the underlying game.

17 The locutions “feeling guilt or pride” suggests that moral education causes people to
experience certain feelings in addition to what they would have experienced without the
education.  Sometimes it seems instead to change the nature of our experience altogether.
Children may come to feel sharing pleasurable rather than irksome and bullying tiresome rather
than exciting.  For the purposes of this discussion all that matters is that we have the ability to
collectively “program” ourselves so as to change the payoffs in the game situations we will face
in the future.
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