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1. Introduction

It is plausible to suppose that morality, at its core, is about meshing our own interests
with those of others, sometimes consonant with ours and sometimes conflicting. What we
investigate as moral theorists may include (explicit and implicit) rules of conduct, qualities of
people and institutions, and attitudes toward and emotions elicited by conduct, people and
institutions. The particular rules, qualities, attitudes and emotions that are of interest are ones
that restrain us from thwarting the interests of others to better serve our own or which move us to
advance mutual interests or to advance the interests of others at the expense of our own. The
best developed theoretical framework within which questions about conflict and congruence of
interests is addressed is the mathematical theory of games. It is natural, therefore, to expect that
game theory might be useful in moral theorizing, that it might serve, as R Braithwaite wrote
during its early years of development as "a tool for the moral philosopher." Indeed, one might
expect crisp game-theoretic analyses would eventually supplant much of the murkier ordinary
language debate that fill the ethics journals. Yet, in spite of a few promising forays by people
who might be regarded as insiders to moral philosophy' and several instructive suggestions by

outsiders,” this expectation has not materialized.

Two obstacles, I believe, have thwarted a fuller realization of Braithwaite’s vision. First,
we have not been sufficiently careful in thinking about the game theoretic framework most
appropriate for these discussions and the proper interpretation of the technical devices employed.
These may well differ from the frameworks and interpretations suitable for other applications of
game theory. Second, a number of examples from game theory seem to challenge its purported
relevance to moral philosophy, or at least to raise questions about the proper relations between
the two disciplines. In this paper I will first discuss several important foundational issues. Then
I will present four of the challenging examples and begin to speculate about what lessons we

ought to draw from them.



Reflections

I am afraid that much of what follows will seem (correctly) to be unsolicited exhortations
to others. One of the most influential papers in philosophical logic over the last few decades
began with the observation that it is much more pleasant to give advice to receive it. We on the
less pleasant side of the subsequent transactions were happy to accept our role because of the
author's eminence and talents. Ihave no illusions that my own advice will be so cheerfully
accepted. I do hope, however, that it might inspire some further examination of the connections

between ethics and game theory.

2. The Framework

2.1. Iteration

The action in game theory seems to have shifted from the one-shot game to the repeated
game and especially to evolutionary versions of such games in which the more successful
strategies replicate themselves and the less successful die out. Those of us interested in moral
philosophy should be a little careful about joining the bandwagon. It is true that many actions
that concern moral philosophers--paying debts, helping others, honoring promises, keeping
confidences--are the kinds of actions that are performed repeatedly and it is not unreasonable to
suppose that this fact is relevant to their moral status. There are several reasons, however, not to
write off the importance of the one-shot game in ethical theory. First, not all morally significant
actions are repeated. It is difficult to imagine genocide, for example, modeled as a move in an
iterated game. Furthermore, in standard treatments of repeated games, the appropriate strategy
depends on the likelihood that the game will continue from one round to the next. When that
likelihood approaches zero, the game is identified with the one shot game. Morality does not
seem like that. The rule that ought to guide my action does not change because this is the last
time [ am to be faced with a particular kind of choice. It seems at least as virtuous to abide by
the usual moral practices of helpfulness, generosity, truthfulness, etc., on one's deathbed as in the
prime of health. Indeed, the kind of "cooperation" in one round of a repeated game that is
explained by the rewards and punishments that the players might expect in later rounds is exactly

the kind of cooperation that does not require morality at all.
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Even those morally significant act types that we do perform repeatedly are often
performed only once with a particular partner and with no knowledge of what moves that partner
has made in previous play with others. Consider, for example, Ann's refraining from stealing the
coins in the cup of a blind beggar she passes on vacation in San Francisco, or Baden's gallant
efforts to help an old lady across the street. It is unlikely that Ann or Baden knows anything
about the prior "play" of their partners, or that the pairs will interact again with similar or
switched roles. This suggests that when we choose to employ the iterated game, it would be
appropriate to consider a version in which the history of previous play is unavailable to the
players. Strategies like Tit for Tat that are conditional upon play in previous rounds then make
no sense. Since the relative payoffs for unconditional strategies are the same no matter how
many iterations of a game are played, we may as well take each stage to comprise just one
(possibly mixed) play of the game by every pair of members of the population. The games can
still be considered evolutionary. After each stage, the number of players playing successful
strategies increases relative to the number playing unsuccessful strategies. The stages
themselves, however, are viewed as sets of one-shot games being played simultaneously rather
than repeated sequences of games. To distinguish the framework suggested here from the one
that has become more commonly adopted, we call the former parallel and the latter serial.
Parallel evolutionary games were, in fact, employed by Maynard Smith and others in early
biological applications of game theory and emphasized in the writings of Bryan Skyrms and
Robert Sugden. But it in more recent literature they seem to be increasingly neglected in favor
of serial games. One-shot games, parallel evolutionary games and serial evolutionary games
may all clarify aspects of moral philosophy, and I will have things to say about all of them.
Since they have different properties, it will be important to specify which kind of game is being

considered.

2.2. The dynamics of evolution.
Many properties of evolutionary games are sensitive to the choice of evolutionary

dynamics, i.e., of the rules that determine how the population of players is altered at each stage.
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For biological purposes it makes sense to think of the players at each stage as comprising a
generation and the payoffs as measures of fitness, indicating the expected number of like-
playing offspring a player will have in the next generation®. If we assume that the total
population remains constant, this gives rise to the replicator dynamics described by the
following equation:

R) p = p(V/V)
Here p,*, the proportion of the population playing strategy i at a given stage, is the product of the
proportion p, playing i in the previous stage and the ratio V,/V of the payoff of strategy i to the
average.

When the concern is cultural transmission rather than biological, it makes sense to think
of a fixed population of players who discard and adopt various strategies as the game progresses,
rather than a changing population whose members, on death, leave varying numbers of offspring.
It is not clear that the replicator dynamics is appropriate in these contexts. Those who bother to
discuss their use of replicator dynamics for models of cultural transmission sometimes point to
results establishing that replicator can arise under various other scenarios of player choice. In
one scenario (described, for example, in Gintis), players compare their own payoffs in the
current round with the payoffs of others in that round. Each player i switches to the strategy of
player j with probability zero if V; < V,and with probability proportional to V-V, otherwise. In
another scenario (described in [Bendor and Swistak, 1997]), player 1’s probability of switching
to the strategy of player j depends on two attributes of j: j’s payoff relative to the average, V/V,
and the proportion N; /N of players employing j’s strategy. The first parameter is viewed as an
indicator of the present success of j’s strategy and the second parameter as an indicator of its past
success. We suppose, further, that i’s probability of switching to j’s strategy rises exactly as
much when the first parameter is raised by a fixed amount as when the second parameter is
raised by that amount, and that the rate at which 1’s probability of switching to j’s strategy grows
with the proportion of players using j is itself independent of that proportion. Under both of
these scenarios, it turns out that the replicator dynamics correctly describes how the population
evolves, and this may be thought to justify the common practice of borrowing this biological

model for descriptions of cultural evolution.
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Several authors have suggested that a more appropriate dynamics for cultural
transmission is winner imitation. After each generation, every player whose payoff is less than
anybody else's switches (with probability o) to a strategy whose payoff is maximal. In the
version of winner imitation described in the equation below, it is assumed that if there is more
than one strategy with maximal payoff, the players who switch choose randomly among the

winning strategies and therefore divide themselves evenly among them.
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Let us temporarily set aside the question of whether any of these stories about
evolutionary dynamics are appropriate for serially repeated games. In the parallel framework,
especially if some mixed strategies are permitted, they seem implausible. If players don't know
the history of others' past play, it is not likely that they know the strategies that have produced
the current behavior, and so it is unlikely that they will be able to imitate more successful
strategies. A more plausible story is this. Players are more likely to stick to a strategy if it has
been successful and they are more likely to switch to another strategy (any other strategy) if it
has not. So the probability of changing to a new randomly chosen strategy in each round should
be a decreasing function of one’s relative payoff under the old strategy in the preceding round.
We might label such a dynamic "failure-induced groping," or FIG. A FIG dynamics is still an
evolutionary dynamics in a broad sense: the numbers of the successful strategies tend to increase
relative to the unsuccessful ones. One reasonable FIG dynamic, for example, is described by

equation below (where N is the total number of strategies).
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Here the probability of abandoning strategy i in favor of a randomly chosen strategy is
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proportional to the size of i’s payoff relative to the largest and smallest payoffs obtained by any
players. Specifically, the probability of abandoning i is proportional to (V-V,)/(V\-V,,) where
V,; and V_, are the largest and smallest payoffs obtained. If the constant of proportionality « is
one, a player who gets the maximum payoff will maintain the current strategy with certainty and
a player who gets the minimal payoff will abandon the current strategy with certainty. If « is
less than one, the players will be less likely to abandon inferior strategies. It is assumed that
players who abandon their strategies distribute themselves evenly over the remaining strategies.
Another plausible FIG dynamic, described by the equation below, assumes that each player

wants to maximize his expected payoff.
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To this end he retains his strategy with certainty if its payoff exceeds the average payoff in the
population and abandons it with certainty otherwise. Since there may be some cost to switching,
the equation requires that i’s payoff exceed the average by more than some threshold constant f3.
The first FIG dynamic is proportional, the odds of switching increase continuously as payoff
declines. The second is discrete, the odds of switching jump from O to 1 when conditions
warrant. Both FIG dynamics require that players know something about the payoffs to others in
their generation, but neither requires that they know the strategies others used to obtain those
payoffs.

If all mixes of permissible strategies are permitted, a plausible dynamic might involve
stochastic learning. Each player observes the strategy that is realized when she implements her
mixed strategy and the payoff that results. She updates her mix noting the component of her mix
that actually gets realized in play and by adding to the weight of the component realized in
proportion to the relative payoff received.* Alternatively one might consider a stochastic
replicator dynamics, whereby each player changes the weights on his mix in proportion to the
relative payoffs received by the strategies realized by others in the previous round.

Each of the dynamics described can and should be modified to include the possibility of
7
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mutation or error. In each generation a few players may be assumed to change to (or give birth
to) a strategy chosen at random from the strategies represented in the population. This feature
may significantly change the course of evolution. Without it, for example, none of the above
dynamics except the stochastic ones would allow the population to change once every strategy
received the same payoff. Although some writers have done so, it is not reasonable to suppose
that the rate of such mutation or error is zero. The idea of error or mutation suggests that an
unexpected player replaces a particular member of the old population. Sometimes, however,
mutants are described as “invaders,” suggesting that they are just added to the population, and
the dynamic, “makes room” for them by a tiny proportional adjustment in all the other strategies.
This distinction should not matter unless the population size is small.

The FIG dynamics and the stochastic learning dynamics employing relative payoffs place
fewer informational requirements on players than the replicator and winner imitation dynamics
that have been more widely used. For purposes of modeling moral evolution, it may turn out
that even these requirements are too strict. Some even less demanding dynamics will be
discussed in subsequent sections. It may well turn out that, for games of interest to us, a variety
of these dynamics are equivalent in the sense that they take identical initial populations to
identical final states. Until that has been demonstrated, however, we should study the dynamics
most plausible for the application we have in mind. And even after it has been demonstrated, the
more faithful dynamics might be retained to understand the path from initial to final state or the

speed with which that path is traversed.

2.3. Solution concepts

One of my exhortations is to think more carefully about conditions that a set of strategies
must meet to be considered a solution to a game. Formulating such conditions requires
reflection on the phenomena that the game is supposed to model and the insight the modeling is
supposed to provide. In the evolutionary context, we generally think of these games as modeling
purely descriptive phenomena: what people actually do or believe rather than what they should
do or believe. The observation that the strategies we employ constitute a “solution” to such a

game should then serve as an explanation for our employing them. Players don’t really “solve”
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these games themselves, but instead evolution leads them inevitably to a “stable equilibrium.”
The trouble is that common notions of evolutionary stability are often either too strong or too
weak. Ifthey are too strong, they will not be met by any population of strategies--including the
one describing the state whose presence we wish to explain. If they are too weak, they will be
met by too many populations of strategies. The fact that our state happens to correspond to one
of these will not have much explanatory force. Some details of this awkward situation are

summarized below.

Originally, evolutionary stability was taken to be a property of strategies. A strategy is
supposed to be evolutionarily stable if a population using that strategy will not be dislodged by
the course of evolution. A number of authors formulated conditions on game payoffs that were
intended to characterize this notion of a stable strategy. Early work on evolutionary games was
marred by a failure to realize that these characterizations are not equivalent. For example,
Axelrod and Hamilton claims to show that Tit for Tat was an evolutionarily stable strategy in the
sequentially repeated prisoner’s dilemma, while Selten and (Boyd and Lorberbaum) offer proofs
that no such strategies exist, all apparently unaware that they are employing three different
concepts of evolutionary stability.

(Bendor and Swistak, 1998) does a good job of sorting out the confusion. Listed below
are conditions for evolutionary stability of strategy 1 employed by Axelrod, Maynard Smith,
Boyd and Lorberbaum and Bendor Swistak. (j is a strategy and V(i,j) is the payoff to a player

employing i when meeting a player employing j.)

A) Vi[VELD=VG.D],

MS) Vil VD>V or (VELD=V(.D & VIL)>V[)) 1,
BL) Vj[ V(L,i)>V(.i) or (V(L)=V(.i) & YkV(i,k=V(k)) ],
BS) Vil V(Li)>V(.i) or (VL)=V(.i) & V(ij)=V(i)) ].

MS and BL each correspond to a notion of universal stability: strategies meeting these

conditions survive invasion under any evolutionary dynamic. BS corresponds to a notion of
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restricted stability: strategies satisfying it survive under the replicator dynamic, but perhaps not
under other evolutionary dynamics. MS is strong: strategies meeting it drive to extinction any
mutations that appear among them; whereas BL is weak: such mutations could survive among
the natives, even though they do not grow. MS is narrow: strategies meeting it are invulnerable
only to homogeneous invasions of mutants, whereas BL is broad: strategies resist mixed
invasions as well. (The distinction between broad and narrow stability is not relevant for
restricted stability: under the replicator dynamics a strategy resists heterogeneous invasions if
and only if it resists homogeneous invasions. Condition A merely states that i forms a nash
equilibrium with itself. If i satisfies A then a population of i-players will not be dislodged under
an evolutionary dynamic with a zero mutation rate. It may be overthrown, however, by a single
invader. A population composed entirely of a strategy i that meets A, but not the other stability

conditions is sometimes said to be an unstable equilibrium.

There is no good reason, in discussing concepts of stable equilibria, to restrict attention to
populations playing a single strategy. Solution concepts in non-evolutionary games, after all, do
not require that players play similarly. We may as well take any strategy set (i.e., any partition of
the population into subpopulations by strategy) to be evolutionarily stable if it is similarly
impregnable. The definitions above require some modification in the broader framework. No
heterogeneous population can really admit invaders because the strategy set representing the
original population is changed, (and thus “driven extinct”) by the presence of a single invader. It
is more appropriate in the general context to say that a population is strongly stable if the
dynamics restores the strategy set to its original condition after a small invasion, and weakly
stable if the dynamics does not carry the strategy set farther from its original condition after a
small invasion.

One might expect that all the stability concepts from (Bendor and Swistak, 1998)
discussed above would easily generalize to the broader framework. Replace each occurrence of

strategy 1 in the above conditions with a strategy set profile 6=(s,,...,s,) Where s,,...,s, are the

n

proportions of the population playing strategies 1,...,n, and take V(o,x) to be the average payoff

to a member of ¢ when each member of 6 plays x (if x is a strategy) or when it plays each
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member of the population represented by x (if x is a profile.) This does not quite work in finite
populations, however. Consider, for example, a two-person two-move game whose only nash
equilibrium is a fifty-fifty mix of the two moves. One example is penny mismatch, where each
player chooses “heads” or “tails,” with the object of choosing a different face than his opponent.
An evolutionary version of this game played with n players (who cannot themselves mix
strategies) has a profile meeting MS if n is even (viz., (.5,.5)), but, if n is odd, it doesn’t even
have a profile meeting A. If we make some reasonable stipulations,’ then the closest attainable
approximations to (.5,.5), namely ((n-1)/2n, ((n+1)/2n) are, in fact stable. More generally, we
can take the simple generalized stability conditions to apply to “games” in which there are a
continuum of players so that all profiles (p,,...,p,) 0<p,<1 are realizable. To find the equilibria in
the n player game, we first find those of the game with a continuum of players. Then we look at
what happens to the closest approximations to these in the n-player game. If the dynamics carries
one of these profiles to its neighboring equilibrium, it is itself an equilibrium in the n-player
game. Otherwise, it is not. Ifthe equilibrium it is carried to is stable, so is the approximation,
otherwise it is not. Examples of these phenomena are given in the appendix. In what follows,
therefore, we generally take the stability conditions to apply to strategy profiles and assume a
continuum of players, with the understanding that information about the n-player case can be
extracted.

Once the stability conditions are set out it is easy to map the logical relations among
them. MS and BL are independent and each implies BS, which in turn implies A. For sequential
evolutionary games, MS and BL are too strong: they cannot be met. BS and A are generally too
weak. For example, in an evolutionary version of the iterated prisoner’s dilemma they are met
by populations supporting zero percent cooperation, one hundred percent cooperation or any
figure in between.

One source of the “excessive strength” difficulty is that sequentially repeated games
allow so many different strategies. For example, the reason that MS cannot be satisfied by any
single strategy is that for any strategy i, it is possible to construct a strategy j different from i that
mimics the way 1 plays against i and j. Clearly in this case we can’t satisfy either of the

inequalities V(i,1)>V(j,1) or V(1,))>V(j,j). So the difficulty may not arise when the permissible
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strategies are limited. This is exactly what happens in the case of the parallel versions of the
evolutionary game. These can be regarded as obtained from the sequential game by allowing
only the simplest strategies—the unconditional ones.

If there is any strategy i such that (i,1) is a strict nash equilibrium in the underlying one-
shot game, i.e., any 1 such that V(i,1)>V(j,1) for all j#i, then 1 satisfies every stability condition
listed above. Conversely, if i meets any condition on the list then (i,i) is a weak nash
equilibrium in the underlying game. Among the strategies that form weak nash equilibria with
themselves, some meet MS but not BL some meet BL but not MS, and some meet neither.
(Examples are provided in the appendix.) Since many parallel games have strategies that form
nash equilibria with themselves, the difficulty of excessive strength may not be a great concern
in this framework.

To meet the difficulty of excessive weakness, at least two ways of discriminating among
the stable profiles have been invoked. Suppose S is a stable profile. The “basin of attraction” of
S under a particular rule of evolution is the set all profiles that evolution carries to S. The
“robustness” or “degree of stability” of S is the size of the smallest invasion that can overturn S.
The strategies with the largest basin of attraction need not be the ones with maximal degree of
stability. For example, consider the profiles for a game where each player can play either left or
right. It is conceivable that the evolutionary dynamics carries all profiles (0,1) through (.6,.4) to
an equilibrium at (.5,.5) and all other profiles to an equilibrium at (.8,.8). Then the basin of
attraction of (.5,.5) would be larger than that of (.6,.4). But the former equilibrium could be
upset by an invasion of right players comprising ten percent of the population, whereas the latter
would require an invasion of 20%.

Which is a better explanation for our being in a particular state S, the observation that S
has the largest basin of attraction or the observation that S has the largest degree of stability?
The best explanation for our being in S would seem to be the observation that S is where we are
expected to be. The basin of attraction would only be a good explanation if we thought that every
initial distribution of strategies was equally probable and that evolution stopped as soon as an
equilibrium was reached. In fact, however, neither of these conditions is plausible. First, if we

assume that each player starts with a randomly selected strategy, then the equal initial
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distributions are much more likely than the unequal ones. Second, as was noted previously, it is
not reasonable to suppose that offspring never differ from their parents in the biological model or
that there are never “accidental” strategy shifts in the social modal. In either model, mutations
continually threaten the status quo. Under these conditions’ one would expect the length of time
that a population spends at any stable point to correlate with the number of mutants required to
upset it. So our being in a particular state is best explained by the degree of stability of that

state.

2.4. Interpersonal Comparisons and Asymmetry

The evolutionary dynamics and the conditions on payoffs characterizing equilibria
discussed above all seem to require that payoffs be interpersonally comparable. According to the
dynamics described in section two above, the growth or decline of a particular strategy under
non-equilibrium conditions depends on comparisons between the payoffs to players who have
adopted that strategy and those who have adopted others. According to the solution concepts
described in section three, the achievement of equilibrium depends on comparisons between the
payoffs of natives and invaders. When our concern is biology, and payoffs are just measures of
reproductive success, this is quite appropriate. When our concern is culture, however, we should
be a little more wary. It is common to regard the payoffs of these games as utilities, and the
questions of whether interpersonal utility comparisons are meaningful and measurable are
notoriously vexed.

Those writing about evolutionary games who bother to discuss the issue typically deny
that their framework requires interpersonal utility comparisons.” One understanding that might
make this possible is that all the references to payoffs of others in a given environment are
understood counterfactually as the payoffs that one would oneself get in that environment, if one
adopted the other’s strategy. Thus, for example, in the replicator dynamics Player j is more
likely to adopt i’s strategy when his payoff under his current strategy is less than what he himself
would have gotten had he used 1’s strategy. Equilibrium is achieved when each player “sees”

within the population no strategy that will serve him better.
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What makes this counterfactual interpretation possible is a special kind of symmetry that
has, until now, been built into our framework. Payoffs to players depend only on the strategies
they and their opponents adopt. This assumption is what makes our payoff notation coherent.
V(i,j) is the payoff to any player adopting strategy i against any player adopting strategy j. It
follows, of course, that exactly the same payoffs are available to all players and one player can
approximate another’s payoff just by adopting her strategy.

Interpreting payoffs counterfactually in familiar conditions for evolutionary dynamics
and stability raises certain questions. First, while player i can approximate j’s payoff in a
particular environment by adopting j’s strategy he may not be able to duplicate it, because i’s
playing his current strategy is a part of the environment in which j was acting. Of course if there
are many players, the effect of play against any one opponent on the payoff for the round will be
negligible. Nevertheless, if we really take seriously the idea that the payoffs are to be interpreted
counterfactually, then, instead of comparing V; with V;, in the current round, i should compare V;
with the payoff that a player would get by employing j’s strategy in an environment where one
fewer player uses 1’s strategy and one more player uses j’s. Second, the interpretation seems to
render the replicator dynamics less plausible. As long as we take each player to be influenced by
others’ payoffs, we can imagine that the degree of j’s influence on i is proportional to the size of
J’s payoffs relative to 1’s. But if we take i to have full knowledge of what his payoff would have
been under every strategy currently represented in the population, it is difficult to see why i
wouldn’t simply choose the highest paying option. Of course i may realize that others are
reasoning similarly and so the environment will change, but that would seem to provide no
justification for the particular weighting of lower-paying alternatives called for by replicator.
Similarly, if i knows what his payoff would have been under every strategy currently in the
population, it is difficult to maintain that he doesn’t also know what his payoff would have been
under strategies that are not any longer in the population. So why shouldn’t i choose a strategy
that maximizes his payoff whether it is represented in the population or not? One might hold
that players do not know what payoffs they would get under various strategies, but rather infer
this by observing the payoffs of others who use them. But this would require players to know

that the others’ payoffs are the same as they themselves would reap by adopting their strategies.
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In other words it would require that the players themselves can make interpersonal comparisons.

I conclude from all this that the plausibility of standard accounts of evolutionary
dynamics and equilibrium requires that it makes sense for one player to compare his payoffs
with another. If we are really concerned about the use of interpersonal comparisons it would be
reasonable to adopt an evolutionary dynamic under which each player’s probability of switching
strategies in a given round depends on his own relative payoffs in this round and previous
rounds. Each player strives to do as well as he can do. He does so by changing frequently when
he does worse than he sas done and occasionally (i.e., at the “mutation” rate) even when he does
as well as he has. The details could be worked out in a variety of ways. For example, we could
devise a scheme whereby players weigh payoffs in recent rounds more heavily than those in
earlier rounds when deciding whether current payoffs are low enough to warrant switching
strategies.

It is possible to establish a few properties of equilibria under this kind of “individualistic”
dynamic without knowing how it is specified. First, such equilibria really do not req