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8reves T.  Quantifiers
KviN a5 Modal Operators *

Abstract, Montague, Prior, von Wright and others drew attention to resem.
blances between modal operators and quantifiers. In this paper we gshow that classical
quantifiers can, in fact, be regarded as “8§5.like” operators in & purely propositionak
modal logic. This logic is axiomatized and some interesting fragments of it are in-
vestigated.

“ |

Resemblances between quantifiers and modal operators were noticed:
very early in the modern development of modal logic. Much of the early
work in the field exploits these resemblances, adapting familiar ideas.
of predicate logic to the unfamiliar modal systems. In this paper our
aim will be the reverse. We will show that predicate logic can be regarded.
as a special kind of propositional modal logic.

The fact that this can be done supports the claims of von Wright
and others that quantification is a kind of modality. These claims bear
on recent discussions of the value of modal logie. Champions of elassical
predicate logic have argued that without quantifiers modal logie is triviak
and with them it is unintelligible. This paper meets the first half of the-
criticism by showing that propositional modal logic, broadly construed,.
is no more trivial than first order logic itself.

In addition it is hoped that a modal reconstruction of predicate logie
might provide some insight into predicate logie itself. In our system,
for example, quantifiers and variables are replaced by four different
operators. We try to take advantage of this “division of labor” to analyze-
the undecidability of predicate logic.

The paper is organized as follows. Section One surveys two earlier-
attempts to link quantifiers and modal operators — the first by Richard.
Montague in [14]; the second, by Arthur Prior in [16] and [17]. In Section
Two a system of propositional modal logic called PREDBOX is described.
and shown to be equivalent to first order predicate calculus. In Section
Three PREDBOX is axiomatized and a completeness proof is sketched.
The paper concludes with a discussion of the expressive power and deci-
dability properties of some interesting fragments of PREDBOX.

* This paper is based in part on material in Chapter IV of [8]. I have benefited.
greatly from comments of Anthony M. Ungar.
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I. Background
Mentague

Richard Montague, like several authors before him, noticed that
many standard modal logics the necessity and possibility operators
behave like universal and existential quantifiers. For example, the fol-
lowing properties of S5 all seem to be reasonable conditions on a logic of
necesgity:*t

1) If +A then F[J4

2) +F {4-+B)->(04->171B)
3) F—OA e~ 04

4) FOAeOOA4

5) b —de—~[]—4A

Each of these is mirrored by a law of quantification theory.
1y If FA then FVaod

27) F V(4 ->B) (VoA->VzB)
3y b —Ved Vo—-V2A

4 F Vo4 oV VA

5") Fdzd e —Ve—A

This observation led Montague to suggest the following uniform treatment
of necessity and quantification.’ - '

Consider a language with predicates, individual constants, individual
variables, quantifiers over individuals and the unary sentential opera-
tor [J. Let a model for such a language be a triple (D, R, f) where (D, R)
= (D, Ry, RByy ..., €1, 63y ...) is an ordinary model for first order logic
and f is an assignment of members of the domain D to the individual
variables. Let two models (D, R, f) and (D', R', f') be related by P if
D =D’ and f = f'. For any individual variable », let them be related
by P, if D = D', R = R’ and f agrees with f’ on all variables with the
possible exception of z. Then we can write the truth conditions for [J
and Vo in such a way that the similarity between them surfaces:

M F A iff for all models M’ such that MPM', M'FkA.
M EVzA iff for all models M’ such that MP M', Mk A.

Thus the addition of quantifiers to a language appears to be no different
than the addition of a collection of modal operators.

In light of the subsequent development of semantics for modal logic
it would be natural to recast Montague’s formulation in terms of relations
between possible worlds, rather than relations between models. One way

i The only 85 axiom missing is []4 4. Montague felt that if [ represented
physical necessity then this axiom, though true, should not be considered & truth
of logie.
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to do this would be to let Montague’s models be the possible worlds.
A frame on this view would be a structure (W, Pz, Pz,,...) where W
is u set of models and Pz,, Pz, are relations on W like the ones described
above. This won’t quite do, however, because in predicate logic, unlike
propositional logic, the truth values of atomic formulas under an in-
terpretation are not independent of one another. We would like to say
that Pz, ..., is true at w = (D, R, f) if and only if (f(z,), ooy () 18
« member of the relation which interprets P. But this kind of truth con-
dition doesn't make predicate logic seem very much like modal logic.

Prior

Arthur Prior points out that modal logics deal with sentences which
are open in the sense that contextual information is needed to assess
their truth. A sentence isn’t just ‘true’; it is ‘true-at-a-world’ or ‘true-at-
_a-time’. Sentences containing the pronoun ‘I’ are also open in this sense.
Prior suggests a new kind of propositional modal logie, ‘egocentric logic’
whose sentences are to be evaluated at people. ‘I am eating a liverwurst
sandwich’ is false at the author, though it is probably true at someone.
Stretching this notion slightly, we can imagine a logic whose sentences
are true or false at objeets in general. ‘I am inanimate’, for example,
would be true at the Washington Monument. In the standard modal
logics we prefix a box to a sentence and call it necessarily true if it is true
in all possible worlds. Similarly we could prefix a ‘U’ to a sentence of
egocentric logic and call it universally true if it is true at all objects. We
would then have a modal version of monadic predicate logic.® But there
is no need to stop here. The “objects” at which sentences are true or
false might be ordered pairs. ‘My first member is the author of my second’
would be true at (Scott, Waverly) but false at (Leibniz, Critique of Pure
Reason). And if we allow sentences which are evaluated at pairs of ob-
jects we might as well allow those which are evaluated at triples and
quadruples as well. More generally we might allow sentences to be ¢va-
luated at infinite sequences of objects, or assignments.

The writings of both Montague and Prior suggest that quantifiers
can be construed as operators in a purely propositional modal legic.
On Montague’s approach the “possible worlds” at which sentences are
evaluated are ordinary first order models. On Prior’s approach they are
sequences of individuals. Either way, however, there is a problem. The
atomic formulas of predicate logic cannot all be treated as atoms in the
modal language. If we regard Pry and Pyx, for example, as distinet sen-
tence letters of the modal language then o Iy Pey & —3x dy Pyx will
be satisfiable. If we regard them as identical sentence letters then dz Jy
(Pyx & —Pry) will be unsatisfiable.

2 This was pointed out by David Lewis in [12], p. 112

4 — Biudia Logica 2-3/80
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A solution to this problem can be found in the variable-free formu-
lations of logic by Tarski, Bernays, Halmos, Nolin and Quine.’ Each
of these authors has devised a set of operations by which we can get
the effect of arbitrary permutations and identifications of the variables
occurring in a formula. In our case we can express these operations with
additional sentential operators. When added to the modal language these
operators enable us to represent conveniently all the atomic formulas
of predicate logic. The idea is to restrict attention to n-place atomic
formulas in which the first # variables occur exactly once and in a fixed
order. These can be treated as atoms, and from them, using the sentential
operators mentioned above, the remaining “atomic formulas” of PRED
can be generated. But since the variables following predicate letters are
now uniquely determined; one can just as well dispense with variables
altogether.

II. PRED and PREDBOX

In this section we describe a propositional modal system called PREDBOX
and show it equivalent to classical predicate logic, hereafter referred to
as PRED. The language of PREDBOX differs from the usual modal languages
in that its sentences come in sorts. Sort-n sentences correspond to first
order formulas whose variables are among v, ..., v,. A sort-n sentence
is assigned a truth value only at sequences of length » or greater. I have
argued in [9] that languages which are propositionally many sorted in this.
way (i.e., languages in which different kinds of sentences are evaluated
at different kinds of indices) arise naturally in many applications of
modal logic. Without the sorts, however, it would still be possible to
construct a logic equivalent to a kind of predicate logic in which the
predicates have no fixed degree. (Such a logic has been investigated by
Martin Davis in [2].)

Sentences of PREDBOX are built up from sentence letters using the
usual Boolean connectives and the following additional one-place oper-
ators:

1 (“generalization”)
o (“rhotation”)

G (“switeh”)

[l (“identification”)

More formally, for each natural number », the sort-n formulas of PREDBOX
are defined by the following clauses:*

.

8 See [71, {33, [8], [15] and [18]. One work borrows from these authors, parti-

cularly Quine.
4 In this paper we take natural numbers to be positive integers.



Quantifiers as modal operators

i) For every natural number 4, p? is a sort-n sentence.
i) If 4 is a sort-n sentence, so are [14, o4, o4, []]J4 and —A4.

iii) If 4 is a sort-n sentence and B is a sort-m sentence where m < 7,
then (4 & B) and (B & 4) are sort-n sentences.

We use ‘PREDBOX’ to refer both to the language described above and to
the logic based on it. PRED is the language of first order predicate logie
whose non-logical vocabulary is comprised of

i) for every natural number 4, an individual variable v,
i) for all natural numbers ¢ and =, an w-ary predicate letter PE.

PREDBOX with identity is the language obtained from PREDBOX by eli-
minating identification in favor of a 0-ary connective I {‘identity’) of
sort 2. Many of our remarks about PREDBOX will apply equally to PREDBOX
with identity. Those which apply specifically to the latter system will

be enclosed in square brackets. We use 4" B", O™ ... to range over
sort-n sentences of PREDBOX — sometimes dropping the superscripts —
and ¢, v, z, ... to range over formulas of PRED.

A PREDBOX model is a structure (UD? V) where | JD* is the set of
all finite or denumerably infinite sequences of members of a nonempty
set D, and V assigns to each sort-n sentence letter a subset of the set
D" of length-n sequences of members of D.

Sentences of PREDBOX are evaluated at members of (JD% The truth
value of A™ at a sequence d depends only on the first m terms of d. If
the length of @ is less than m then it makes no sense to say that A™ is
true or false at d.

Norarion. If d is a sequence of length at least % then d; is the
sequence obtained by deleting the first & terms of d.

DEFINITION. Let M = ({_ D% V) be a prEDBOX model, d e D% and
m < length (d). The notion A™ is true at d in M ((M, d) - A™} is defined
by the following clauses: (We will supress the model # when no con-
fusion results.)

. 4 is p7
Then d F 4 it {dy, ..., d,> e V(pP).
. A is —B.

Then d F A iff not d F B.
ili. 4 1is B &C.
Then dF A iff de B and d O,
iv. A is [1B.
Then d £ 4 iff (d,dy,...,d,> FB for all d in D.

v. A is oB.
Then d F 4 if d,,d,,...,d, ;> FB.
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vi. A is oB and m = 2.

Then d & A iff {(d,, dy, dy, ..., d,> F B.
vii. A is oB.

Then d £ A iff d & B.
viii. 4 is [||B.

Then d k A iff {d, d;,...,d,> F B.
[ix. A is I.

Then d F A iff d, = d,.]

The remaining classical connectives are defined in the usual way. In
addition we define the sort-n constants T " (truth) and " (falsity) as
pt ~p? and p} & p} respectively. [In PREDBOX with identity []4 is
defined as —[1— (I & 4).]
Notice that the truth condition for each non-classical operator resembles
he truth conditions for modal operators in the Kripke semantics in the
sense that a complex sentence is true at a sequence exactly when its
constituent sentence is true at all appropriately “related” sequences. We
can deduce from the properties of the relation associated with each ope-’
rator some of the logical characteristics of that operator. [J4, for example,
is true at 2 sequence s if A is true at all sequences which are identical
with s at every place but the first. Since “identity of tails” is an equi-
valence relation, [J will satisfy the theorems of S5. Similarly, the rela-
tions associated with g, ¢ and [||, when their truth conditions are written
in the relational form, have the property that each sequence is related
to exactly one sequence. Hence if O is any of these operators — O A<« 0O—A4
will be a theorem.

DeriNmtioN. M = ((JD% v) is a model for A" (written Mk A™) if
(M, d) E A" for all d in D" such that length (d) = n. 4 is valid if every
pREDBOX model is a model for A.

Special Abbreviations. In the following we assume m = max (n, k)

1) e d" =g oMV (po )T H(AM & ™

2) o 'A" =4 08 A"

aellleytes’d >k
3)  pd =y 9;09j+1{” orhon A i < k
A it j=Fk
8 Oy gad =at 8 Oy - oot
PropERTIES. Suppose & is a sequence of length at least m’.

a) g A" and g A" are sori-n
8 A" 18 sort max (j, k, n), and &y, i d” i8 govt max(n, Ji, .5 Ji)

$ ‘'de' denotes the coucatenation of 4 and e. When boldfacs letters are used to
denote segquences, the sorresponding plainface letters with subsoripts denote terms
in those seGUENCOS.
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b) dk A" iff {dp, dyy ..., e D% F A"
c) dF op A iff (duy ..., dy, diddf F A"
d) d koA iff (dyy ..., dj_1, D] F A"
e) (M,d)Ed; g4 if (M, d') E A where d’ i3 the result of replacing
the & term of d for 2 <4<k by the j3.
DerFINITION. Let S be a finite sequence of natural numbers. We
define the sentence ys4 by induction on the length of s.

Y80 A =4 054

P81y veny S0 A =a7 05, 7<b1y oo 0s b A
where, for 1<i<n—1, {; = 8; if 8>3, and ¢, = 8;+1 if 8;,<s,.

PrOPERTY. Suppose M = (D" V) is a PREDBOX model, {dy, ..., &>

is a sequence of members of D, k is a natural number no larger than n, and
Ltyy ..y > 18 @ one-one sequence of natural numbers such that, for 1 <i <k,
n—k <t,<n. Then (M,<{d, ..., 8,0) Fylly, ...y Lo A" iff
(M, gy oeer iy Bay ooy Gogd) B A™

DEFINITION. Let s = {8, ..., 8,> be a sequence of natural numbers
< m. .
We define the one-one sequence “S8 = {*8;, ..., *$,> as follows:

(s = (8w

¥ {81y euey Bppry = *(81y ey 8K Where § = 84,
if 8., doesn’t occur in *¢sy, ..., 8,> and

¢t is the first term of (1, ..., max(m,n))> which
doesn’t occur in *{8,,..., 8,y or § otherwise.

Notice that no term of *s is larger than max(m, #).

For all 4, 1 < i< n, let p; be the number of occurrences of & in s.
For all §, 1 <j<p;, we write S(¢,j) =k to indicate that % is the g8
place in s at which s; occurs. (So, for example, 81,1y =1,

Og A =g Ves 5(5(3,1) ..... sy 5(3(1,1} ,,,,, S{mpn)}A
PROPERTIES. i) Sort (654A™) = max(m, n)
i) gy oeey By FOgA" iff <k31,...,k%> E A"

With each PREDBOX model M = ({_D“ V) we associate the PRED model
(M) which has domain D and which interprets each n-place predidate

letter P* by V(p}). Conversely, if % = (U, Py, ...) is a PRED model we
associate 3 PREDBOX model M () with it: namely (U% V) where V(pf)

—P*. Notice that M(U(M)) = M and U(M (W) =A. We shall also

need to translate members of |JD®into assignments So if d e (D" let
A(d) be an assignment such that 4(v;) = d; if ¢ < length (d). Conversely
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III. Axiomatization

This section contains a completeness proof for PREDBOX which resemb-
les both the Makinson-style completeness proofs for propositional modal
logics and the Henkin-style proofs for classical predicate logic.” The
strategy is to construct a PREDBOX model which satisfies an arbitrary
consistent sentence A by extending {4} to a maximal consistent set
of sentences I" and constructing from I' a sequence at which all and only
the members of I' are true.

! DEFINITION. The theorems of PREDBOX (with identity) are the mem-
bers of the smallest set containing
1)  All tautologous sentences
2)  All instances of Al1-Al1 (A1-A15) below and closed under:
3) Tautologous consequence
4)  Rules R1, R2 below.
Al. —QAeO—4 for O =||],e0
A2. O(A4 &B)(O4 & OB) for O = [, 0, 5, [|]
_A3- Q(k,kz ..... kn)D An*"@q,kz,....kn){jfin
A.5. 5i,f éjkA H&ik 6_£]A
A6. 6_17:,;@{191 ,,,,, k.,,>A”*@<k1,.,‘,ki_l,;,k,-+; ..... kn)A
m

@Gcl ..... k> @5 A™ ‘“”@<j,k2 ..... k> )

AT. 9<k1 ,,,,, nd m A HQ(kl,kl,kB,...,lcn>A

AS. @<k1 ~~~~~ k) DA "9@<k1 ’kn>A

A9, Oy iy €A SO iy, iy p AT (2 2)
pAl Al :

A0, Oy 4y 0A" SOk, kAT (12 2)
oghAler AL

All. O, AteA"

[A12. 64 1]

[A13. O I>6,T)

[Ald. (O] & 64 )04 1] -

[A15. (Oyupl &Gy, kn}An)wdzi,...,k{_l,j,ki_,,_l,;..kn)én}

Ri. If+ A then FOA for O =g, 0, O, [|| ‘

R2. If F A"—>0,, 4, B" then F A" O, oB®
{provided k, > max(m, n, ks, ..., k).

The axioms and rules have been chosen to facilitate the completenes
proof. It is easy to verify that the theorems of PREDBOX are all valid

7 {llustrations of these can be found, for example, in [11] (pp. 1-38) and [4]
(pp- 128-136). o
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DEFINITIONS. A set I" PREDBOX is consistent if it contains no finite
subset {4, ..., 4,} such that ~ (4, &... & 4,) is a theorem. I is
maximal consistent if it is consistent and is not strietly contained in another
consistent set. I" is saturated if it is maximal consistent and, in addition,
whenever 8<k1w,kn>{jzi ¢ I' there is some k such that @‘(k,kz,“”kﬂ)A ¢ I

LEMMA. If {A™} is consistent it can be extended to a saturated set, I

ProoF: Let 4,, 4,,... be an enumeration of PREDBOX such that,
whenever 4, is of the form Oy . OB" A, 18 Oy, kg —B" Where
k = 1-sup {sort(4,): j <i}. Let I' = (JI; where I'y = {A™} and i,

is I';u {4,,,} if this is consistent and I';u{—A4,,,} otherwise. It is easy
to check that I' is maximal consistent. To see that it is saturated suppose
that A; = Oy, OB" and A; ¢ I We claim that 4;.,eI. For if
not I;u{4; ,} would be inconsistent, so for some Cy, ..., 0, e (0, & ...
s & Oy > =B iy, iy —B" would be a theorem. But by Al, R2, A3
this means that (C; & ... & C,)>O,, .k, OB" is a theorem which

violates the maximal consistency of I

.....

THEOREM. If A™ is consistent there is a model M and a sequence d
such that (M,d) F A™.

Proor: Let I' be a saturated set containing 4. We define the binary
relation ~ on natural numbers as follows:

i~ pj iff AerdyA el for all 4.
{:?: o~ pj iff Q(iJ)I 153 F.J

Axioms 4 and 5 [6, 7 and 8] insure that ~j is an equivalence relation.
We use the notation ‘{»] to denote the equivalence class of n under ~ .
We define a PREDBOX model M = (|{_JD* V) by letting D = {[i]: i <w}
and taking V(p") to be {{[ki], ..., [k, 1>: Oy, ..., kD" € I'} for each sort-n
sentence letter p". V is well defined by axiom 10 (axiom 9).

To prove the theorem it suffices, by All, to show that for any sort-n
sentence A, (M, {[k;],..., [k, D) F 4 iff @<k1-~--kn>A eI We do so by
induction on the construction of 4.

i) If 4 is a sentence letter the result follows immediately from
the Definition of V.

ii) Suppose 4 is of the form OB. If (M, {[k], ..., [k,]>) F A then,
for all k, (M, k], [k],..., [k D) ¥ B. So, by induction hypothesis
O kg, ey BT for 2l k. But I is saturated, which means &4, ..., ,WBGIK
Conversely, if (M, ([k,1, ..., [k,]> £ A, then for some k, (M, {[k], [k.]1, -.-
..., [E,1>) # B and, by induction hypothesis, @y, . kB ¢ 71" By A8
Oy, iy A £ 1" and, by A3 G4 4 ¢ 1

The remaining cases are straightforward and are left to the reader.
This completes the proof of the theorem. ,
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Strong completeness.

A set I' of sentences is said to be satistied in a model M = (UD% V)
if there is some sequence d in D" at which all the members of I' are
true. (Notice that if there is no bound on the sorts of members of I,
then I" will be satisfied only at infinite sequences.) As in the case of PRED,
a proof of strong completeness (i.e., that every consistent seb is satisfied
by some model) is complicated by the fact that some consistent sets.
cannot be extended to saturated ones. The most common strategy to
cireumvent this problem in the case of PRED is to augment the language
with 2 new stock of variables. This procedure has no analog in PREDBOX,
however, so we must turn to another trick.® Given a consistent set Ir
of sentences, let 2I" = {642, 4, ..., on>A: A eI} 2I" can be extended
to a saturated set by a construction like the one given above, and the
model for 27" can easily be converted into a model for I

IV. Fragments
A. n-predbox

For every natural number n an n-model is a structure (D", V) where
D" is the set of all n-tuples of members of the non-empty set D and V'
is a function which assigns a subset of D" to every gort-n sentence letter
of PREDBOX. We define truth and validity of sort-n sentences in n-models
in the obvious way. For each m, the n-models and sort-n sentences of
PREDBOX constitute a special modal system which we call n-PREDBOX.
(A" is valid in the class of n-models if and only if it is valid in the class
of PREDBOX models, so we can think of #-PREDBOX a8 the sort-n fragment
of PREDBOX.) 1-PREDBOX is just S5. (That is [J obeys the S5 theorems
and OA«A is a theorem when O is g, 0, 0T [].) 2-PrEDBOX turns oub
to be the “basic two-dimensional modal logie,” B, of Krister Segerberg.”
The translations of Section I establish that #-PREDBOX is equivalent
to the m-variable fragment of n-adie predicate logie, i.e., t0 the class
of valid formulas containing only n-place predicate letters and variables
from 8IMONBE Py, «-vy Upo

Rule R2 in our axiomatization of PREDBOX allows sort-n sentences.
to be derived from sentences of sorts larger than #. Hence we cannob
assume that n-PREDBOX is axiomatized by restricting the axioms and
rules for PREDBOX to the language of n-PREDBOX. In our completeness
proof for PREDBOX we constructed an infinite sequence at which A was
true. Whenever a formula of the form B was false at the sequence We
could construct a sequence at which B was false by bringing sufficiently

& See [13] pp. 142-149 for an illustration of the use of this kind of strategy i
proving completeness of PRED.
9 See [19]. Segerberg’s system and 2-PREDBOX are discussed in [10].
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distant terms to the head of the sequence. This strategy is not applicable
in the case of n-PREDBOX where all sentences are evaluated at sequences
of fixed finite length. In a planned sequel to this paper it will be shown
that our completeness proof can be adapted to n-PREDBOX without iden-
tity. The completeness problem for n-PREDBOX with identity remains
-open.t®

The decidability questions for n-PREDBOX, On the other hand, are
all answered. It follows from [19] that 2-PREDBOX Iis decidable!! and
from [8] that n-variable n-adic logic (and hence n-PREDBOX) is undeci-
-dable for n > 2.

B. Unidentified predbox

The quantifiers and variables of PRED are replaced in PREDBOX by
four distinet operators. By separating the roles played by each of these
operators we might hope to gain a new perspective on predicate logic.
In this subsection we establish the undecidability of the [t]-free-fra;gment
of PREDBOX, hereafter referred to as unidentified PREDBOX. From our
translations between PRED and PREDBOX it can be seen that unidentified
PREDBOX is equivalent to the class of valid formulas of predicate logic
which contain no atomic subformula with more than one occurrence
of the same variable. We will show that the decision problem for PREDBOX
.can be reduced to that for unidentified PREDBOX. '

If A is a sentence of PREDBOX let p, be a sort-2 sentence letter of
PREDBOX which does not occur in 4. Let E(4) be the set containing
i, ii, and iii below and all instances of iv such that B" is of the form g.¢"
where ¢" is a sentence letter occurring in A and k<.

L pa—>0Py
. (0304 & P4)>00P4
ili. OQoe—0O—p4
iv.  Oni1Pu—(B i 00n1B")
Notice that E(4) is always finite and no member of E(4) contains any
oceurrences of identification. We use the notation ‘KE(A) to denote
the conjunction of the members of H(A).

10 The problem is somewhat similar to one discussed by Leon Henkin in [6].
In the languages Henkin considers formulas may contain only the variables vy, ..., Vns
but they may contain predicate letters of any degree. Henkin points out that in the
ususl axiomatizations of predicate logic, proofs of n-varigble formulas may require
formulas with more than n-variables. For example there seems to be no proof in-
volving only » and y of the formula

@A) (@ = y) &3z Goy)>Va (s = y—3z Guy).

He asks, among other questiong, whether n-variable predicate logic can be axiomatized
by s finite set of m-variable schemata.
i See also [20] and [1] pp. 88-89.
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LeEMMA. If M is a PREDBOX model such that M F KE(A) then

iy Vipy) ts an equivalence relation

i)y If {dy, 6> € V(D) and ¢" is o sentence letier in A
then (M, (dy, ..., &) F ¢" iff
(M, (dyy oeny iy €5 Giry oo d.») F g

DerINITION. For all A in PREDBOX we define two maps s, and i,
from PREDBOX to unidentified PREDBOX a$ follows:

s4q" = ¢"
$4(B & 0) =8B &s8,4C
§,0B = QOs,B for O = 3, 0,0 —

DeriNiTIONs. Suppose M = (UD% V) is a PREDBOX model.

i) Let M, be the model (D" V') where V'(p,) is the identity
relation on D and V'(p") = V(p") for p" # Py

ii) If ~ is an equivalence relation on D, let M|~ be the gtructure
(Uc", U) where € = D]~ and U(p") = {d:)s -5 [E 1 1 {Gay -ovy Gu?
€ V(p,)} ([d] is the equivalence class of d under ~.)

LEMMA.
iy If MEA then M, ki,
i) If M = (D" V) is a model for t, then M|V (p4) E 4.

The theorem below follows immediately.

THEOREM. Unidentified PREDBOX is undecidable.
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