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     1 (Donniger, 1986, p. 124) reports that "more than a thousand articles" were written on the

subject in the 60's and 70's.  Our own check under the keywords "prisoner's dilemma", "prisoners'

dilemma" and "prisoner's dilemna"  returned 116 entries in the Social Science Index since 1983,

118 entries in the Econlit Index since 1978,  and 91 entries in the Philosopher's Index since 1982. 

 This does not count material in the textbooks, dictionaries, encyclopedias, and handbooks of

game theory,  economics, psychology, philosophy and other disciplines.

     2See, for example,  (Gibbons, 1992, p. 3) and (Fudenberg and Tirole, pp. 9-10).  The reader

may also wish to consult these sources for standard terms and concepts of game theory that are

used in this paper.  The former is a very recent, carefully-written textbook emphasizing economic

applications.  The latter is a rigorous and comprehensive text and survey of the field.  A

thoughtful selection of other helpful sources is provided at the beginning of (Binmore, 1992). 

     3 See (Rapoport and Guyer, 1966), (Rapoport, Guyer and Gordon, 1976), (Rapoport and

Chammah, 1965) and (Axelrod, 1984).  The first two consider only ordinal-valued payoffs and

the other two consider only symmetric games. We allow cardinal-valued payoffs and asymmetric

games.  Other differences will be noted in the course of the paper.
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Pure and Utilitarian Prisoner's Dilemmas 

The prisoner's dilemma game has acquired large literatures in several disciplines.1  It is a little

surprising, therefore, that a good definition of the game is so hard to find.  Typically an author relates

a story about co-perpetrators of a crime or participants in an arms race, provides a particular payoff

matrix and asserts that the prisoner's dilemma game is characterized by, or at least illustrated by, that

matrix.2  In the few cases in which characterizing conditions are given3, the conditions, and the

motivations for them, do not always agree with each other or with the paradigm examples in the

literature.  In this paper we characterize several varieties of prisoner's dilemma games.  In particular,

we suggest that there are at least two distinctions among prisoner's dilemma games that have
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philosophical significance, that between pure and impure dilemmas and that between utilitarian and

non-utilitarian dilemmas.  In the first section, we explain the distinctions and characterize them in

terms of the payoff matrix.  In the second, we discuss an issue of moral philosophy that illustrates

the significance of the pure/impure distinction.  In the third, we discuss an issue in law that illustrates

the significance of the  utilitarian/nonutilitarian distinction.

Taxonomy

The basic dilemma

Consider the following payoff matrix.

C D

C Rr,Rc Sr,Tc

D Tr,Sc Pr,Pc

      Row and Column each choose whether to cooperate or defect.  Rr and Rc are the rewards to Row

and Column, respectively, for universal cooperation.  Pr and Pc are their punishments for universal

defection.  Tr and Tc are the temptation payoffs that Row and Column receive for defecting while

the other cooperates.  Sr and Sc are the sucker payoffs they get for cooperating while the other

defects.

     A minimal set of conditions needed for this game to be considered a prisoner's dilemma might

require that defection dominate cooperation for each player, but that universal cooperation be

unanimously preferred to universal defection.  In other words:

B1. Tr>Rr  and Pr>Sr

B2. Tc>Rc  and Pc>Sc 

B3. Rr>Pr  and Rc>Pc.



     4In each of conditions B1,B2 and B3,  one of the two strict inequalities could be replaced by a

weak inequality without losing the character of the dilemma.  Games satisfying B1-B3 might thus

be said to be strict prisoner's dilemmas:  if the payoffs are changed by a sufficiently small value,

the game will continue to satisfy the conditions.

     5The argument that rational players defect in a basic prisoner's dilemma does not depend on

the either player's knowing the other is rational.  If we add a weak "common knowledge"

assumption--that each knows the other is rational--conditions B1-B3 can be significantly

weakened.  Let an extended prisoner's dilemma be a game that satisfies:

E1. Ti>Ri and Pi>Si for some i=r,c

E2. Pj>Sj for j�i

E3. Rr>Pr and  Rc>Pc 

Since j knows that i is rational, E1 implies that j will expect i to defect.  In that case, E2 implies

that j will defect himself and E3 implies each player will be worse off than they would have been

had they cooperated.  (Again, a "weak" version of the conditions could be obtained by allowing

one of the strict inequalities in E1 and E2 to be replaced by a weak inequality.)  In the exhaustive

classifications of 2x2 games of (Rapoport, et al., 1966) and (Rapoport, et al.,  1976), these games

are not classified as prisoner's dilemmas because one player could induce the other to cooperate

by "threatening" to cooperate herself.  But if the players are known to be rational, such a threat

3

    We label a game meeting conditions B1-B3 a basic prisoner's dilemma.4   The conditions for a

game to be a basic prisoner's dilemma do not require either cardinal or interpersonal utility

measurements.  They require only that each player rank its own temptation, reward, punishment, and

sucker payoffs in descending order.  In games meeting these conditions, defection is the dominant

choice for each player: each is better off defecting, whether the other cooperates or defects.5



would not be credible.

     For convenience, we restrict our attention in this paper to basic prisoner's dilemma games. 

We believe, however, that the discussion could be generalized to include all  extended prisoner's

dilemmas.

     6And in fact, universal defection is a dominant equilibrium (or equilibrium in dominant

strategies) which is a stronger equilibrium concept than Nash equilibrium.

4

Universal defection is the only Nash equilibrium, i.e., the only outcome in which neither player has

reason to regret its choice (given the choice of the other).6  However,  universal cooperation is

unanimously preferred to mutual defection, which implies that the equilibrium outcome is not

(pareto) efficient.  Under these conditions one feels the force of the dilemma:  players who aim at

self-benefit choose defection, but they would achieve more self-benefit if they each choose

cooperation.  It is often implicitly assumed that universal cooperation is the most desirable outcome

of a prisoner's dilemma game.  On any reasonable definition, a most desirable outcome will be Pareto

efficient.  As will be shown in the next section, however, the definition of the basic game (B1-B3)

does not imply that universal cooperation has this property.

The pure dilemma

There is no reason why rational players in a prisoner's dilemma need restrict themselves to

either certain cooperation or certain defection.  Each of them might consider a mixed strategy of

cooperating with probability p and defecting with probability 1-p.  When such independent mixed

strategies are permitted, the argument that B1-B3 ensure that universal cooperation is the optimal

outcome no longer goes through.  Let us say that a basic prisoner's dilemma is pure if there is no pair

of independent mixed strategies that provides both players higher payoffs than they get from

universal certain cooperation, i.e., when universal cooperation is Pareto efficient relative to the class



     7We make the standard assumption that preferences over uncertain outcomes are represented

by the expected utility of these outcomes.  When no confusion will result, we simply write

"utility" or "payoff" for "expected utility" or "expected payoff".

5

of mixed strategies.7  In this section we demonstrate that not all prisoner's dilemmas are pure and we

characterize pure dilemmas in terms of their payoff matrices.

The payoffs of a basic prisoner's dilemma are shown in figure 1.  Row's utility is plotted

along the horizontal axis and Column's is plotted along the vertical axis.  The labeled points

correspond to the four payoffs that are possible when mixed strategies are not permitted.  For

example, the point labeled (C,D) represents the payoff (Sr,Tc) that results from Row's cooperating

and Column's defecting.  Condition B1 guarantees that (C,D) lies to the left of (D,D); B2 and B3

guarantee that it lies above.  Similarly, B2 guarantees that (D,C) lies below (D,D); B1 and B3

guarantee that it lies to the right.  B3 guarantees that (C,C) lies above and to the right of (D,D).  B1

and B2 guarantee that it lies beneath (C,D) and to the left of (D,C).  The solid lines connecting the

labelled points represent the feasible payoffs when one of the players adopts a mixed strategy.  For

example the points on the line from (D,D) to (D,C) at the bottom of the figure represent the feasible

payoffs when Row defects and Column mixes.  The points along the line from (C,D) to (C,C)

represent the payoffs when Row cooperates and Column mixes.  The payoff when  Row defects and

Column cooperates with probability ¼ and the one when Row cooperates and Column cooperates

with probability ¼ are marked with x's.  The line connecting these two points represents the set of

feasible payoffs when Column cooperates with probability ¼ and Row mixes.  Similarly, the line

connecting the two points marked with an asterisk represents the set of  feasible payoffs when

Column cooperates with probability 3/4 and Row mixes.  Notice that the former line lies entirely

within the odd-shaped quadrilateral formed by the original four points, whereas the latter line does

not.  Indeed, the latter line contain points that lie northeast of (C,C).  Thus if both players adopt

mixed strategies they can achieve higher expected utilities than under universal cooperation.  The

prisoner's dilemma depicted is therefore not pure: we call it impure.



     8We use strict inequalities in P and P' below to facilitate subsequent comparison with RCA,

although the gloss above in terms of Pareto efficiency would suggest weak inequalities.  Nothing

substantive hinges on the choice.
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     The payoffs that are feasible when arbitrary independent mixed strategies are permitted are those

that lie in the region bounded by the four solid line segments and the connecting curve in  figure 2.

When (C,C) lies outside the triangle formed by (D,C), (D,D) and (C,D) (i.e., northeast of the

uppermost dotted line in the figure) the feasible payoffs under independent mixed strategies are

within the quadrilateral bounded by those four points.  When (C,C) lies within that triangle, however,

the feasible payoffs extend beyond (C,C).  Thus a prisoner's dilemma game is pure if and only if

(C,C) lies outside the triangle. 

  The question of whether the point lies outside or inside the triangle is equivalent to the question of

whether the line from (C,D) to (C,C) has a shallower slope than the line from (C,C) to (D,C) or a

steeper one.  So the game is pure if and only if8:

Ti-Ri can be thought of as the temptation bonus to player i.  It is the amount of additional utility

(relative to the reward) he gains from defecting.  Similarly Ri-Si is the sucker penalty.  It is the

amount i loses (relative to the reward) by the other's defection.  Using T+ and S- for the temptation

bonus and sucker penalty, and rearranging terms, we see that the condition for purity can be

expressed:

P')   Sr
-Sc

->Tr
+Tc

+,

or, equivalently, that the (geometric) mean sucker penalty exceeds the (geometric) mean temptation

bonus.  An alternative demonstration that P' characterizes purity, which exploits an analogy between

the prisoner's dilemma game and a pure exchange economy, is presented in an appendix.

   Note that condition P, unlike B1-B3, requires cardinal utilities.  It does not require that the utilities



     9 Precisely this argument is given in (Rapoport et al., 1965, pp. 34-35) and (Axelrod, 1984, p.

10).  (This is why we label the condition RCA.)  In the former work, the condition is viewed as

"an additional constraint" whereas in the latter it is viewed as part of the definition of the

7

be interpersonally comparable, however.  Changing the units in which r's utility is measured (i.e.,

subjecting them to a linear transformation) would not affect the inequality in P.

In a basic prisoner's dilemma, no pair of pure strategies benefits both players more than

cooperation by both.  In a pure prisoner's dilemma, no pair of mixed strategies benefits both players

more than certain cooperation by both.  Under  some conditions players may be able to use

correlated mixed strategies.   For example, if players r and c are able to condition their strategies on

a publicly observable event, they could achieve outcome (C,D) with probability p and outcome (D,C)

with probability 1-p.    One might think that such conditions would require a third characterization

of the notion of prisoner's dilemma, i.e., that the conditions under which no mixed correlated strategy

is better for each player than universal cooperation might be different than the conditions under

which no pair of independent mixed strategies is better.  This impression, however, is mistaken.  If

mixed correlated strategies are allowed in the game of figure 3 the set of possible payoffs remains

exactly the same.  If they are allowed in the game of figure 2, the set of possible payoffs corresponds

to the region within the triangle (D,D)-(D,C)-(C,D).  So again, universal cooperation is optimal if

and only if (C,C) lies outside the triangle.  Correlated mixed strategies may (as they do in figure 2)

make available payoffs superior to the payoffs from universal cooperation and  to any payoffs that

can be obtained from independent mixed strategies.  Whenever a correlated strategy benefits both

parties more than universal cooperation, however, there are independent strategies that do so as well.

Correlation is particularly important for repeated games, where players know that later rounds

can be used to reward and punish the play of current rounds.  For example, in a finitely repeated

prisoner's dilemma two players could, by taking turns as defector and cooperator, assure themselves

payoffs Sr+Tr+...+Sr+Tr and Sc+Tc+...+Sc+Tc.  These considerations have led a number of authors9



prisoner's dilemma game.  Some similar conditions that look deceptively like appropriate

generalizations of RCA to the nonsymmetric case also appear in the literature.  Let RCA* be the

condition Ri>½(Ti+Si) for i =r,c.  As noted in [], RCA* can be extracted from the remark in

(Gauthier, 1967) that each player loses less from his own cooperation than he gains from the

other's cooperation.  Let RCA**  be the condition Ri<½(Ti+Si) for i =r,c.  Sobel (1991, p. 34)

labels a basic prisoner's dilemma that meets RCA** a stretched prisoner's dilemma and notes

that in a stretched prisoner's dilemma both players do better from a fifty-fifty mix of the

correlated strategies (D,C) and (C,D) than they do from universal cooperation.  (In fact RCA** is

both necessary and sufficient for the superiority of the fifty-fifty mix.)  He also notes that in

stretched dilemmas meeting the requirement Ri<¼(Ti+Si+Ri+Pi) for all i=r,c, both players do

better adopting a fifty-fifty mix of the independent strategies C and D than they do cooperating. 

As noted in this paper, mixed strategies (whether independent or correlated) can surpass

universal cooperation if and only if a prisoner's dilemma is impure.

8

considering symmetric prisoner's dilemmas (those in which Sr=Sc=S, Tr=Tc=T, and so on) to require

the condition:

RCA)  R>½(S+T).

This ensures that the correlating turn-takers will do worse than cooperators.  But the arguments

above show that correlation can beat universal cooperation if and only if independent strategies can,

and that this happens if and only if condition P is not met. So one need not have used correlation to

motivate condition RCA.  Indeed, a quick check reveals that, in the symmetric case, P is RCA.

The utilitarian dilemma

   Suppose we are strict Benthamite utilitarians, i.e., we believe that the most desirable

outcomes are those that maximize total utility, regardless of how that utility is distributed. Then the

observation that universal cooperation is efficient with respect to pure strategies or mixed strategies,

would not be enough to ensure that it is a most desirable outcome.  More total utility might be
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associated with outcomes (C,D) or (D,C) (or both)  than with (C,C).  (And (C,D) and (D,C) are also

Pareto efficient).  An example of such a game is shown in figure 3.  Here the total utility at (D,C)

is Sr+Tc.  The higher of the two dotted lines contains all the points at which the sum Row's and

Column's utility would have this value. Since (C,C) lies southwest of this line, it represents a smaller

total utility and, from the utilitarian perspective, a less desirable outcome.

     Accordingly, let us define a utilitarian prisoner's dilemma as a game in which,  in addition to

conditions B1-B3,  (Rr,Rc) has the greatest total utility of all possible outcomes.  Since B3 implies

Pr+Pc < Rr+Rc, and since any mix of Tr+Sc and Sr+Tc lies between these two values,  the utilitarian

dilemma can be characterized by the conditions B1-B3 and:

U) (Rr+Rc)>(Tr+Sc)  and  (Rr+Rc)>(Sr+Tc).

In figure 3,  Sr+Tc is larger than Tr+Sc. For (Rr,Rc) to maximize utility, (C,C) must lie northeast of

the higher dotted line (say at point Q), and so the line from (C,D) to (C,C) must have a slope

shallower than 1 and the line from (C,C) to (D,C) must have slope steeper than 1. Hence

and .  Rearranging terms gives us the two clauses of condition

U.   A different rearrangement yields Tr
+<Sc

- and Tc
+<Sr

-, i.e., the temptation bonus for each player

is less than the sucker penalty for the other.  Note that these conditions, unlike B1-B3 and P, do

require that utilities be interpersonally comparable.

      If a game fails to satisfy condition U, strict utilitarians would not regard it as true prisoner's

dilemma since they prefer the outcome in which one party defects (with probability one) and the

other cooperates to the outcome in which both cooperate.  A  non-utilitarian may not be impressed

by this observation.  The outcomes (C,D) and (D,C) represent the most unequal distributions of

utility, so they do not seem particularly desirable.  If utilities are costlessly transferrable, however,

the distinction between utilitarian and non-utilitarian prisoner's dilemmas is significant for the non-



     10Perhaps the best known invoker is David Gauthier.   In (Gauthier, 1967) the game is used to

explicate ideas attributed (approvingly) to Kurt Baier.  It is not clear whether the prisoner's

dilemma really does provide the appropriate model for morality in Gauthier's later writings

because he now maintains that a person's disposition to cooperate with similarly disposed  people
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utilitarian as well.  For under these conditions the issues of efficiency and equity can be separated.

The most desirable solution to the initial game is the one that maximizes utility In figure 3 this is

outcome (D,C).  After the initial game the players can redistribute utility, moving northwest along

the upper dotted line until their equity concerns, whatever they might be, are satisfied.  As long as

the game is not utilitarian, they could reach a point northeast of (C,C),  i.e., an outcome they both

prefer to universal cooperation.    Thus there can be two motives for focussing on utilitarian games.

For utilitarians, they are games in which universal cooperation is the most desirable outcome, and

for non-utilitarians they are games in which universal cooperation is the most desirable outcome

even when utilities are transferrable.

Each kind of prisoner's dilemma we have discussed can be obtained  by adjusting the payoffs for

universal cooperation.   Figure 3 represents a dilemma that is pure, but non-utilitarian.  If (C,C) were

below the lower dotted line, say at point P, the resulting game would be an impure  and non-

utilitarian dilemma.  If it were above the upper dotted line, say at point Q, the game would be a pure

and utilitarian dilemma. In the symmetric case condition U, like condition P, reduces to condition

RCA, and so for symmetric games the notions of pure and utilitarian dilemma coincide.  In general,

however, as figure 3 shows, the class of pure dilemmas properly contains the utilitarian ones.  The

relations among the various games is summarized in figure 4.

Morality and the prisoner's dilemma

     The prisoner's dilemma is often invoked, particularly by defenders of social contract views of

morality10, to show the sense in which moral institutions are mutually advantageous.  In Book II of



is, to some degree, detectable by others.  The game is also frequently invoked in explications of

Thomas Hobbes.  See, for example,  (Kavka, 1986).

     11(Plato, 358e-359b).
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The Republic, Glaucon describes to Socrates   "what people consider the origin and nature of

justice."

"They say that to do wrong is naturally good, to be wronged is bad, but the suffering

of injury so far exceeds in badness the good of inflicting it that when men have done

wrong to each other and suffered it, and have had a taste of both, those who are

unable to avoid the latter and practice the former decide that it is profitable to come

to an agreement with each other neither to inflict injury nor to suffer it...This, they

say, is the origin and essence of justice; it stands between the best and the worst, the

best being to do wrong without paying the penalty and the worst to be wronged

without the power of revenge.  The just then is a mean between two extremes;.."11

It does not seem unreasonable here to identify "best,"  "worst" and "mean" with the temptation,

sucker and reward payoffs of a prisoner's dilemma.

   Of course universal cooperation is not regarded as the outcome dictated by morality in every

situation that can be modeled by a prisoner's dilemma game.  In the formulation that gives the game

its name, the "cooperative" solution is the one in which two criminals each refuse to confess to a

murder they have jointly committed.  In examples from economic literature, it is one in which two

producers stick to fixed prices.  Morality does not seem to dictate "cooperation" in either case.  But

in these examples the players' actions affect others.  In the artificial world in which the only

individuals, or the only ones who matter, are the players, refusing to confess or to lower prices seems

the right thing to do. In the real world it may be possible to show that, in some larger game,

confessing wrongdoing and refusing to fix prices are themselves the cooperative choices.

    The arguments that choices between moral and amoral behavior resemble choices between



     12It might be possible to argue that moral considerations arise in situations meeting some

condition simpler than P that nevertheless implies P.  Indeed,  in the quoted passage from Plato,

one might take the phrases  "suffering of injury" and "good of inflicting it" to be referring to 

values of S and T  relative to the reward payoffs.  In that case the first sentence might  be

interpreted as saying that, when S+ is much larger than T- for all, then experienced men of limited

power will agree to cooperate.  The condition that  Si
+>Ti

- for all i obviously implies P'.  In fact it

is equivalent to condition RCA* of footnote 8.  It is implausible to suppose that morality would

endorse the cooperative action only when such a strong condition obtains.  If it did, however,

then our discussion of purity would show that in some instances everyone would benefit if

everyone performed actions that morality did not endorse.

12

cooperation and defection in prisoner's dilemma games, however, do not generally show that the

games in question are pure dilemmas.  It is easy to maintain that a person would benefit greatly if

he alone broke an agreement, somewhat less if both parties kept  it, still less if neither did, and that

he would suffer the most if he alone kept it.  It is not so easy to maintain that the payoffs satisfy

condition P or P'.12   If moral choice does sometimes resemble play in impure prisoner's dilemmas,

then we know that both parties will benefit more from randomized strategies than they do from pure

ones.  There are two possibilities.  Either morality calls for randomized behavior or there is a gap

between morality and advantage.  Either possibility would have implications for moral theorizing.

The former would undercut the notion that morally correct behavior is best described by systems of

"deterministic" commands or principles.  Ethical theories may order us to  keep your promises;

avoid injury to others, act in the way you wish others to act or they may inform us that it is a duty

to reciprocate kindness;  it is wrong to ignore suffering.  They do not, however, order us to consult

a randomizing device before deciding whether to keep a promise or inform us that it is right to

reciprocate kindness 90% of the time.  The latter would undercut the notion that morality is

somehow based on (or even consistent with) rationality.  How can  it be rational to adopt a system

that calls for one pattern of behavior when a different pattern of behavior is unanimously preferred?



     13We have in mind ventures like the one undertaken in 1981 between IBM and Microsoft

Corporation that led to the joint development of the DOS operating system, and the one

undertaken by the same firms in 1987 that was supposed to lead to the joint development of 

OS/2. 
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 Legal contracts and the prisoner's dilemma

     Consider two firms, Row and Column, engaged in a joint venture.  The firms are pooling

resources and working on a common research project.  The expected outcome is a new line of

products and higher profits for both firms.  Given the current state of the research, however, each

firm faces a dilemma:  it can secretly start its own project, undermining the joint venture.  We say

that a firm defects (D) if it starts its own project, and cooperates (C) if it does not.  For simplicity,

we assume the following (expected) payoffs:

C D

C 2,2 0,Tc

D Tr,0 1,1

where  Tr and Tc  are greater than 2 so that we have a prisoner's dilemma.13

     The dilemma is pure if and only if (Tr-2)(Tc-2)#4.  It is utilitarian if and only if max(Tr,Tc)#4.

Since each choice of  Tr and Tc corresponds to a different prisoner's dilemma, our taxonomy can be

illustrated as in  figure 5.  Values of Tr are plotted on the horizontal axis and values of Tc on the

vertical.  Each point represents a prisoner's dilemma game. The curved line is the set of games for

which (Tr-2)(Tc-2)=4, so the impure dilemmas are the points northeast of the curve.  The utilitarian

dilemmas, for which Tr and Tc are both less than 4 occupy the square in the southwest.  We consider



     14In principle the firms could write a complete contract, that is, a contract specifying monetary

transfers between the parties conditional on their behavior and on the realization of any Tr and Tc. 

 Although the values of Tr and Tc (like all the payoffs) are assumed to be known to the firms, it

may be difficult or impossible to verify them in court, making complete contracts difficult to

enforce.   For that reason we restrict attention here to contracts with fixed t.  (In a general setting,

we would expect the value of t to vary with the entire payoff matrix.  For simplicity, we assume

that only temptation payoffs are unavailable to the courts.)

     15For simplicity, legal fees, administrative costs, and penalties paid to the state or to third

parties are assumed to be negligible relative to the transfer t.

14

four particular prisoner's dilemmas, corresponding to the points P1, P2, P3, and P4 (so that each

temptation payoff can be either 3 or 5).  Note that only P4 is impure, only P1 is utilitarian and P2 and

P3 are pure but not utilitarian.

     In the absence of a binding contract, rational firms would defect.  We thus assume that a contract

can be written and, if one firm defects, the other firm can prove it in court.  A legal system  can be

viewed as an institution that enforces monetary transfers between the parties.  In our example, a law

or contract determines the amount t that a defecting firm must pay to a cooperating firm.14  In other

words, a legal system transforms the original dilemma into the following game.15.

C D

C 2,2 t,Tc-t

D Tr-t,t 1,1

     For j=1,...,4 we let Gj be the transformation of the game Pj by payment t.  If t is relatively small--

in our example, if t<1--then Gj is still a prisoner's dilemma.  Defection is still the dominant strategy

so that the law should have no effect on behavior.  Each firm obtains a payoff of 1 as it would in the



     16If the objective is simply to maximize the total payoff any t between 1 and 3 is equally

acceptable.  One firm obtains a payoff of 5-t and the other firm obtains t.  For 2<t<3 both firms

obtain more than under universal cooperation.  For t=2.5,  one firm will defect and the total gain

is split equally between the two firms.

     17Indeed, such a transformation is unavoidable in the sense that (D,C) will be a Nash

equilibrium if and only if 1<t<3, and this will obtain if and only if (C,D) is also a Nash

equilibrium.  The reader should not assume that this phenomenon is  tied to the pure/impure

distinction.  Some impure games are transformed into games in which, say, (C,D) is the only

Nash equilibrium.  

15

absence of a legal system.  However, if t is sufficiently large (t>3), cooperation becomes the

dominant strategy.  The law affects behavior and each firm's payoff is 2.   Such "harsh punishments"

are optimal when the dilemma is known to be utilitarian, as P1.  In this case the law has a preventive

role and the court is ideally never asked to enforce the law.   If the dilemma is not utilitarian (as P2,

P3 and P4) harsh punishments are not optimal.  In G2, each firm obtains a payoff of 2 if t>3 (see

above) while it obtains a payoff of 2.5 if t=2.5.  (Cooperation is a dominant strategy for Column and

Row's best response is to defect.)16   A similar argument applies to game G3.  In game G4, if t=2.5

then both (D,C) and (C,D) are Nash equilibria.  This means that the law may transform a prisoner's

dilemma into a "coordination game"17.  Assuming that the firms can coordinate their behavior on one

of these two equilibria, they both obtain a payoff of 2.5, while they would obtain only 2 if t>3.

     The above examples show that the distinction between utilitarian and non-utilitarian dilemmas

is important in determining the role of the law.  Utilitarian dilemmas call for a preventive role

whereas non-utilitarian dilemmas call for a compensatory role.  This does not necessarily mean that

utilitarian and non-utilitarian dilemmas require different contracts.  Suppose, for example, that Row

and Column know that they will face a dilemma that will be P1 with probability p (0<p<1) and either
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P2, P3 or P4 with probability 1-p.  Now suppose they set t=2.5.  Then if the actual game turns out to

be G1 both players will cooperate and receive 2 units; if it is G2,  Row will defect and both will

receive 2.5; if it is G3, Column will defect and both will receive 2.5; and if it is G4, one or the other

will defect and both will receive 2.5.  Thus, the ex ante expected payoff of each firm is given by

2p+2.5(1-p), which is greater than 2.  This is an optimal contract.   If t>3, both firms will always

cooperate and the ex ante expected payoff for each is equal to 2, and if t<1 both will defect and their

expected payoff is equal to 1.  Intuitively, t=2.5 is sufficiently high to prevent any defection when

the dilemma is utilitarian and, at the same time, it is sufficiently low to induce one firm to defect

when the dilemma is not utilitarian.  

Summary and conclusion

     The prisoner's dilemma game is commonly used to illustrate the divergence between individual

and collective rationality.  The various examples found in the literature have a common feature:

individual rationality calls for defection (regardless of the other player's strategy) and, if both players

defect, both are worse off than if they had cooperated.  We have taken this condition to characterize

a basic prisoner's dilemma. 

     In a basic prisoner's dilemma, however, universal cooperation (with probability one) may itself

violate collective rationality.  That is, there may be some mixed strategies such that, if both players

adopt them, both are better off (ex ante) than if they had cooperated with certainty.  When no such

mixed strategies exist, we call the prisoner's dilemma a pure dilemma.  When such strategies do

exist, we call it an impure dilemma.

     It turns out that in a pure dilemma, if utilities are transferable, universal cooperation may still

violate collective rationality.  That is, if one player defects while the other cooperates, there may be

some transfer from the defector to the cooperator (e.g., some monetary payment) such that, if the

transfer takes place, both players are better off than if they had cooperated.  When no such transfer

exists, we call the prisoner's dilemma a utilitarian dilemma.  When such a transfer does exist, we
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call it a nonutilitarian dilemma. 

     We believe that the above distinctions are relevant in many applications of the prisoner's dilemma

game.  For example, if a moral rule prescribes behavior in impure dilemma situations, then either

moral rules call for randomized behavior or there is a gap between morality and mutual advantage.

To take another example, when the parties to a legal contract face a nonutilitarian dilemma, low

damage awards may benefit both parties more than high damage awards.  Both of these examples,

of course, could be given more detailed analyses than we have done here.  We wanted only to

provide a precise definition of the prisoner's dilemma game, to show that there are interesting

structural differences among prisoner's dilemmas and to show that it may be illuminating to pay

attention to these differences when the game is employed in various disciplines.
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Appendix:  Proof that condition P' characterizes the PD's for which (C,C) is pareto efficient

relative to both the mixed and correlated strategy sets.

Since the set of correlated strategies contains the set of mixed strategies we need only show

that (a) P' is necessary in the mixed case and (b) P' is sufficient in the correlated case.

(a) Let us represent a mixed strategy for player i (i=r,c) by the probability qi0[0,1] that she

plays D.  For any strategy profile (qr,qc)0[0,1]2, let us denote the players' expected payoffs by Ur(qr,1-

qc) and Uc(1-qr,qc).  This notation shows that the set of feasible payoffs is identical to the set of

feasible utilities in a fictitious pure exchange economy.  This economy is endowed with 1 unit of "good

r" and 1 unit of "good c", and there are two consumers with preferences given by the utility functions

Ur and Uc.  Furthermore, 

Ur(qr,1-qc) = (1-qr)(1-qc)Rr + (1-qr)qcSr + qr(1-qc)Tr + qrqcPr, (1)

Uc(1-qr,qc) = (1-qr)(1-qc)Rc + (1-qr)qcTc + qr(1-qc)Sc + qrqcPc, (2)

and it is easy to check that Ur and Uc are continuous and strictly monotonic (recall that T i>Ri>Pi>Si).

Hence a PD is pure only if MRSr(0,1)#MRSc(1,0), where MRSi is consumer i's marginal rate of

substitution in the fictitious economy.  Using (1) and (2), this inequality implies condition P'.

(b) Suppose that unversal cooperation is not pareto efficient, i.e., there exists a probability

distribution (qCD,qDC,qCC,qDD) over the pure-strategy outcomes ((C,D)(D,C),(C,C),(D,D)) which both

players prefer to (C,C).  Since (D,D) is pareto dominated by (C,C), there must be such a probability

distribution in which qDD=0.  Hence, there exist qCD$0, qDC$0 and qCC=1-qCD-qDC$0 such that

qCDSr + qDCTr + (1-qCD-qDC)Rr>Rr, and

qCDTc + qDCSc + (1-qCD-qDC)Rc > Rc.

These inequalities contradict condition P'.
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