LOGICAL EXPRESSIONS, CONSTANTS AND OPERATOR LOGIC

For the last 60 years or so the study of logic has been the study
of classical predicate logic. Recently, however, a number of authors
have suggested that certain philosophical arguments can best be rep-
resented in formal systems other than predicate calculus. They have
proposed, for example, logics of tense, necessity and possibility,
obligation and permission, idealized knowledge and counterfactual imp~
lication. The emergence of these "modal" systems has given a new urgen-
cy to questions about the nature and foundations of logic. It is not
my intention to try to answer any important foundationai questions in
this paper. I shall, however, try to point out a few simple facts which
I think have been overlooked or insuffiéiently emphasized in thé standard
accounts of the nature of logic. One consequence of the neglect of
these facts, I believe, is that the logical expressions of a language
have been identified with its constants. I shall argue that this ident-
ification is mistaken. A second consequence, I believe, is that the
modal systems have been treated in the wrong way. I shall suggest a
way in which modal systems can be treated as theories rather than
logics, without changing their syntax.

The paper is organized as follows. Section One comprises an
account of the nature of logic like the sort found in the introduction

to an elementary logic text. Section Two outlines a framework within
which systems of logic can be constructed. Section Three is a discussion

of the neglected facts and Section Four, an outline of the alternative



treatment for modal logics.

I. The traditional account of the nature of logic

An argument is a set of sentences one of which (the conclusion) is
supposed to follow from the. others (the premises). Logic is the study of
correct arguments, i.e., argumenﬁs for which the conclusion must be true
if all the premises are. What makes a systematic study of such arguments
possible is that a small class of expressions figure prominently in a
great variety of arguments. For example, a large class of correct argu-
ments can be obtained by inserting expressions of the appropriate kind
into these familiar patterns:

All Are ceeeeos

is a

Therefore is @ ceevonn

If then .......

It is not the case that .......

Therefore it is not the case that . .
Logicians do not, in fact, study directly arguments formulated in English.
Instead they consider arguments in an artificial, idealized language
which takes from English only the features likely to be important for their
purposes. (In this respect logicians are like physicists, say, who study
"point-masses' rather than physical objects.) Certain expressions in this

artificial language correspond roughly to the expressions like 'all', 'if',

and 'it is not the case that' which feature so prominently in good argu-

ments. These are called logical expressions. A sentence (in the ar -

tificial language) is said to be a logical consequence of some other

sentences if the argument with the latter as premises and the former

as conclusion remains correct after any sensible substi -



fution for the expressions which aren't logical. Aiternatively a sen-
tence is a logical consequence of some other sentences if the argument
with the latter as premises and the former as conclusion remains correct
after any sensible change in the denotation of the nonlogical expressions.
On either approach the logical expressions are constants. They are the
expressions which are.held fixed or whose meanings are held fixed while
the others are substituted for or reinterpreted. There are exactly

seven logical constants, corresponding roughly to the English expressions
| B B ‘

‘and .' 'or ' 'not if 3 'if and only if ' 'all ' and 'some ', The

1 J ¥ )

reasons that logical consequence and logical truth . can be characterized
in a convenient and useful sense by tﬁese seven constants is not com-
pletely understood--there is undoubtedly an element of arbitrariness or
convention in the choice. But we should ﬁot let this state of affairs
hold back our logical investigations. Whatever the reasons for their
being singled out, the seven logical constants have provided the basis
for a highly successful science of reasoning. The success is partic-
ularly striking in an area in which diffucult chains of arguments have
always played an important role--mathematics. Typically, mathematical
reasoning can be represeﬁted in a language containing the seven logical
constants which is capable of expressing a couple of relations among
one kind of object (for example, the relation which holds between a
number at its successor and that which holds among three numbers, the
first of which is the sum of the second and third). A set of sentences
in such a language which is closed uhder logical consequence is calle&
a theory. The idea is that sentences in a theory express the facts’

about a particular subject. Some sentences in a theory, of course,



will be logical truths, but some will be true simply because that's the
way things are. It is a remarkable fact that man§ parts of mathematics

can be reconstructed as theories based on the standard logic.

II. Framework

For the sake of definiteness I will assume that any system of

formal logic can be characterized by a categorially . generated language

and a class of compositional interpretations for that language. By this

I mean that:
i) The expressions of the language are divided into categories.
'ii) Complex expressions are generated from simpler ones by rules
of the form: "If €1s+-+-es€ are expressions of category

CpsecersesCy then e(e en) is an expression of category

1200
c(cl,.....,cn)" where e and ¢ are functions from expressions to

expressions and categories to categories.

iii) Each category is associated with a semantical type which in-

dicates the kind of objects which may be assigned to expressions
of that category by an interpfetation.

iv) An interpretation assigns objects of the‘appropriate type to
the primitive expressions directly. The object it assigns to a
complex expressioﬁ e(el,.....,en) is a function of the objects
assigned to €se-cnese by it and other interpretations. Hence

with each function for building complex expressions we can assoc—

iate a rule of interpretation.

In addition T will assume that there is one class of expressions, the

sentences, which the interpretations assign truth values, T and F. A




sentence is valid if it is assigned T by every interpretation. A prim-—
itive expression is a constant with respect to a class of interpretations
if it is assigned the same object by every interpretation in the class.
For example, a natural way to formulate the classical predicate
calculus within this framework is to list primitive expressions of the
following categories: individual variable, quantifier, n—ary predicate
(for each natural number n), two-place connective and one-place connect-~
ive. The appropriote class of interpretations is one which allows
the n-ary predicate P to be assigned to any object consistent with its
semantical type (viz., any set of n-tuples of individuals) but which
requires & to be interpeted by the unique function which
takes the value T for argument (T,T) and the value P for all other

arguments. Hence & is a constant and P is not.

ITT. Facts

An obvious fact that is worth emphasizing is the following:

1) The creator of a logical system can choose which expressions
are to be held consfant.

The choice depends both on the purposes for which he devises the
system and his attitudes towards the system's subjec£ matter.

A formalist interested in set theory, for example, isrlikely to
consider a theory of sets in which € can receive any interpretation
consistent with a set of axioms. A realist about sets, on the other
hand, might consider only models whose domain comprises subsets of
the cumulative hierarchy and which interpret € as the membership rel-

ation between sets.



Someone interested in characterizing logical truth will presumably
restrict the interpretations of the logical expressions. But in this case
the question of which expressions are logical must already have been de~-
cided. For example, someone who believes '=' is logical will prefer the
predicate calculus with identity in which that symbol is always inter-

preted by the identity relation. Someone who believe '='

is nonlogieal
will prefer a first order theory of equality in which it may receive
_any interpretation satisfying the equality axioms, and in particular,
by any relation holding between pairs of objects not distinguishable by
properties expressible in :the language.

Philosophers interested in the semantics of natural language have
dealt with systems in which the interpretations of 'the' and 'tomorrow'
are restricted. If they want their systems to explain the (nonlogical)
inference from 'John is a bachelor' to 'John is unmarried' then presum-
ably the interpretations of 'bachelor' and 'married' will be fixed;
Again, the creator of the system chooses his constants to fit his needs
and convictions.

Someone interested in establishing the independence of logical
postulates or connectives might choose to allow even the interpretation
of the Boolean connectives to vary.

A fact which may be a little less obvious than 1) is the
following:

2) Not all logical expreésions of calssical predicate logic
are constants.
In classical loéic an interpretation is specified by a model (D, ?i, ?},"

seees S95 C2”’°") and an assignment (dl’ dz,...). ?; and E& are the



6bjécts denoted by the i'th predicate and the j'th individual constant
respectiveiy under the interpretation. The logical connectives &, v, -,
~y , € are genuine constants. Since their interpretation cannot vary
there is no need to specify it in the model. But the quantifiers' inter-
pretations are specified--by the very first coordinate of the model. The
interpretation of ¥ can be regarded as the function f from individuals
to truth values such that £(X) = T if and only 1f X contains D. Similérly
the interpretation of 4 is the function f from individuals to truth values
such tﬁat D £(X) = T if and only if X overlaps D. In each case the function
which interprets the quantifier varies from model to model. Hence 4
and 3 are not really constants. This reflects the fact that the truth.
of a sentence like 'Everything is matter' depends not only on what we
count as matter, but on what we count as "things."

The quantifiers of second order logic are even less like constants.
To interpret them we must specify not only a domain D of individuals but
in addition a set of subsets of D over which the predicate quantifiers
may range. |

The last observation suggests another péint, namely:

3) Conmstancy is a matter of degree.

Although the interpretations of V and 3 can vary, they cannot be just
anything. Quantifiers are ekpressions of the type interpreted by‘functions
from sets of individuals to truth values, but not any such function will
do. If XFY, £(Y) = F and £(X) = T, for ekample, then f cannot interpret
¥. If the class of interpretations allows én ekpression to be assigned
any objéct consistent with its typé we call tﬁat’eﬁ@ressien'schematic.

In classical logic, predicates and individual constants are purely



schematic, truth functional connectives are pure constants and quantifiers
lie somewhere in between. Second order quantifiers are more schematic
than first order quantifiers, but more constant than predicates.

1) - 3) above suggest that constancy is not a good criterion of
logicality. The most that can be said about the connection between the
two notions seems to be the following: If we are Interested in charac-—
terizing the logical truths we will consider systems in which the logical
expressions are not treated schematically.

A final point that deserves emphasis is the following:

4) A Yogical expression need not be of any particular gremmatical

category- ,

’For example the predicate-~-call it existence-~-which is true of all indiv-
iduals and false of none is surely logical. It is after all "definable!
in elementary logic from a O-ary connective that is routinely listed
with the logical constants: VE(EX£~}TD. On the other hand we would not
want tb classify as logical an expression representing YAt the next full
moon it will be the case that...' simply because it happens to be the
kind of expression which attaches to sentences to form sentences.

The idea that logical ekpressions should be sentential operators
gains some plausibility from the argument that since these expressions
can be applied to all sentences, they must be appropriately general.

Tarski's Introduction to Logic, for example, contains the following passage:

All of these words ('not,' 'and,' 'or,' 'if...then') are
well known to us from everyday language and serve to build
up compound sentences from simpler ones. In grammar they
are counted among the so-called sentential conjunctions.

If only for this reason, the presence of these terms does
not represent a specific property of any particular science.



But, in fact, there are other general expressions, just as there are very
specific operators.

A more detailed account of the connection between grammar and logic
has been given by W.V. Qnine? Quine distinguishes between two types of
expressions~-particles and lexicon. Particles are expressions which are
not classed initially in any of the categories, but which can enter a
complex expression in‘the course of its construction. On the formulation
given previously predicate logic would have no particles at all, but
it 1s easy to imagine another formulation in which &, v, - and &
are all particles, there being no categery of binary sentential oper-
ator, but instead four different rules by which a complex sentence can be
built from two simpler ones. This example shows that the particles and
lexicon of a language are not uniquely determined by the expressions of
that language. Quine suggests that a class of expressions which are
interchangeable "salve congruitate" should be considered a‘category Of
the lekicon if it is infinite or if we don't care to be definite about
vhich members of the class are in the language. A logical truth is one
which is true under all category preserving substitu%ions for lexical
atoms.“The logical expressions could presumably be characterized as the
particles which occur essentially in logdical truths.3 Quineis defense
of this characterization ingludes a passage similar to the one from
Tarski quoted above. "The lekicon is what caters distinctively to
special tastés and interests. Grammar and logic are the central
facility, serving all comers."qé Notice, however, that this view does
not require that particles (and hence that logical ekpressions) be of

any particular grammatical category. We can create languages in which
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predicates, predicate modifiers or even sentences are treated as part-
icles. And, as we shall see, wa can equally consider languages in which
sentential conjunctions are treated as lexical items.

It is important to keep in mind that this discussion concerns the
grammar of the artificial language, not that of English. I don't think
it is crucial that these grammars be alike. Gilbert Harman® has
discussed the task of providing a "logical form" for English sentences.
Among the principles that Harman says a theory of logical forms should
satisfy is that it bé Ycompatible with syntax." For example, purely
syntactic evidence leads him to the éonélusion that the English woxd
"if' is not a conjunction like ‘and' and 'or,' but a complementizer like

' sentences is

'that' and'whether.' The %ogical form of 'if...then
not A s B, but something like Iab where I is a predicate (perhaps like
implication) and a and b are names (perhaps denoting propositinns).
Predicates are members of large, open—ended classes and hence nontogical. .
The principle of modus ponens, depending as it does on the interpretation
of a predicate, is not a logical principle. If Harman's task of prov-
iding é logical form for all English sentences were the same as the

task of constructing a useful logic (i.e., a useful codification of

principles of reasoning) this would seem to be a reductio ad absurdem of

his positioﬁ?

. ..oV, Operator Logic

A failure to appreciate the four facts listed above, it seems

to me, confuses discussions of the status of modal systems. There is a
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tendency, for example, to argue that modalities can't be logical expressions
because they aren't constants. This reasoning, as we have seen, would
banish quantifiers from logic as well as modalities.7 There is also a
tendency to insist that modal logics must be treated in one of two
equally unpalatable ways. Either modalities are treated as sentential
operators and modal systems as "logics" in their own right, or modalities
are treated as predicates of sentences or propositions and modal sys-—
tems as theories of classical predicate logic.yk'The first view clashes
with the intuition that logic is universal, i.e., that it codifies
reasoning about all subjects. To speak of a "deontic logic" or an
“epistemic logic" is misleading. It suggésts that there are special
forms of reasoning appropriate to some disciplines, but not others. In
fact, however, we don't use, say, "ethical reasoning” to determine our
moral obligations, but rather we apply our ordinary everyday reasoning

to ethical matters. The second view, on the other hand, requires a
recasting of the simple and familiar modal systems into something much
less appealing.

I'm not sure whether any modal logics really deserve to be called
"ldgics."9 Deontic and epistemic logics seem to me to be paradigm
exémples of theories (theories about philosophically interesting con-
cepts rather than mathematically interesting ones). These theories
are not like the familiar theories of classical first order logic,
however. Their nonlogical symbols are operators rather than predicates.
It is natural to ask, then, on what logic they are based, i.e., what the
general principles éf reasoning‘are’ﬁy whiéh Qe caﬁ gét fféﬁ tﬁé N

(nonlogical) modal axioms to the (nonlogical) modal theorems. I
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shall try to show that there is a simple answer to this question--they '

are theories based on something called operator logic. The question of

whether an expression is logical or not is a .philosophical one and not
one whose answer should be forced on us by a formal apparatus. Operator
logic ‘will not tell us how to sepafate the logical from the nonlogical.
Whether or not we decide that modal systems are logics, however, oper-
ator logic will provide a framework within which they can’bg preserved
intact.

The language of operator logic contains a countable collection of
sentence ietters, a finite collection of logical operators (presumably
the usual Boolean onele;nd possibly others) and, in addition, for
each n, a countable collection of échematic n—-ary operators 1”E:h J cE}Q) -
Just as certain predicates (like &£ ) play special roles in first order
theories, so certain operators (like [ ) may play special roles in
theories of operator logic. This special role will be indicated by
specifying sets of axioms rather than by restoring the interpretations of
the operators directly. It should be emphasized that neither the sent~
ence letters nor the operators are variables. The expression [p -3 p
of operator logic is like the expression ~-Fa -3 Fa of first order logic
in that neither contains anything that cén be bound by a quantifier.

The semantics for operétor logic is designed to insure that logical4
truths are those whose truth hinges on the interpretations of the logical
‘expressions. A model is. a four-tuple (P,t,0,V) where P is a nonempty set

(the propositions), t is a function from P to the set T,F of truth

values, O is a function which assigns to each n-ary. operator [:] a

———

function {ﬁ] from n-tuples of propositions to propositions, and V is a
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function from the set of sentence letters to P. Every sentence expresses

a proposition and every proposition has a truth value. The proposition

expressed by A in the model M=(P,t,0,V) (written: lAlM) is defined in-

ductively:
1) fel = V(®)
ii)l[]Al“.An‘pa.= Ej( ‘Al‘M""’ ]AnlM) (wheretj'is an n-ary
operator).

A proposition X is true in M if t(X) = T. A sentence A is true in M

.(written: M [ A) if the proposition expresséd by A in M is true in M.
Otherwise A is false in M.

For each logical operator we add certain restrictions on 0 and t. For
example, if & is among the logical operators we might require that
t(& (X,Y)=T if and only if t(X)=t(Y¥)=T. A model which satisfies the
appropriate restrictions on the interpretations of -, =9 ,% &>, and
& is called a classical model.

It turns out that this semantics is equivalent to a more fa@iliar

i1
looking possible worlds semantics proposed by M.J. Cresswell. A possible

worlds model for operatof logic is a five-tuple (W,C,0,0,V) such that W
is a nonempty set (the possible worlds), C is a subset of W (the classical

worlds), o is a member of N (the actual world), O assigns to each n-ary operator

e
Jvonsmno)

[E] a function [nl from n-tuples of subsets of W to subsets of W, and

V assigns a subset of W to each sentence letter. If M = (W,C,0,0,V) is a

possible worlds model and w € W, we define A is true in M at w
( M,w) E A) as follows.
i) (K,w) kp if w is a member of V(p).
ii) M,w) E []Al...An if w is a member of [3(ﬁA1ﬂ yeoes VAnﬂ )
wae'“AH= EwﬁW:(MﬂO FA}.
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A is true in M (M FA) if (M,p) kA, Again, restrictions are placed on

the interpretations of the logical operators. For example,we might
require that.g &Ennece = XNYANC. A model which satisfies appropriate
restrictions on all the Boolean nnectives is classical. The idea behind
Cresswell's semantics is that in certain worlds (the nonclassical ones)
even the laws of logic may fail. If il is nonlogical the truth value$ 6f
E3A1"’An in the actual world might depend on the truth value of Al,..., A
in the nonclassical worlds, so we can expect no laws which hinge on non-

logical operators.

Let us call the first kind of model a propositional model.

Tt is not difficult to establish that the two semantics are equivalent in
the sense that for every propositional model there is a possible worlds
model which makes the same sentences true and for every possible worlds
model there is a similarly equivalent propositional model. This can be
done by identifying each proposition with a set of possible worlds

(the set where the proposition would be true) and each possible world with
a set of propositions (the propositions true in that world). The same
argument establishes that the classical propositional models are equivalent
to the classical possible worlds models.

Sentences like [J(p v q} &> [ (g v p) which are valid in the weakest
modal systems are not valid in operatoerggic. In fact the only sent~
ences of operator logic true in all classical models are the tautologous
sentences (i.e., the substitution instances of tautologies). To see this,

let A be a non-tautologous sentence. Then there is an assignmeht = of

truth values to the "components' of A which makes A false. We can con-
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struct a propositional model to falsify A as follows: Let P be theAset of

sentences of the language of operator logic. Let O assign to each n-ary

T o

LreeerB) = DAl...An and,

for all sentence letters p, let V(p)=p. Then every sentence expresses

operator ﬂ the function [J] such that [}(A

itself and, if t is any ‘“"classical" assignment of truth values to sent-
ences which agrees with < on the components of A)(P,t,O,V) will be a
propositional model which falsifies A.

It should mnot be surprising that operator logic adds no essentially
new theorems to propositional logic. If it did we would suspect that the
operators are not really being treated schematically. On the other hand
one can imagine adding various nonlogical axioms and rules to form
theories of operator logic. One such would be the theory E of the con-
gruence operator axiomatized by the single rule Aé&—5 B/ TA& (1B
and known to be complete for the class of possible worlds models for which
C = W. Another would be the theory of K of the Kripke operator axiom-
atized by adding [ (A~ B) ~#(ﬁ A -3 ~ETQ to tﬁe rule for E.

A completeness result for a modal theory system can be viewed as a
kind of representation theorem. It shows that, for many purposes, we
don't need tgvconsider all the operator logic models satisfying a modal
theory because for any such model there is an elementarily equivalent
one of a particularly nice sort. This is analagous to the result that
every gfoup is isomorphic to a.group of permutations or that every
Boolean algebra is isomorphic to an algebra of sets, or that every
model for predicate logic is elementarily equivalent to a model wﬁose
domain is numbers and whose relations are arithmetical.

It might be possible to interpret operator logic as a theory of
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first order logic. Predicateé would play the role of operators, in-
dividuals would be propositionS‘and;a_special-quotation function taking
sentences to individual symbols would enable us to get the effect of
iterating operators. But this possibility does not mean that operator
logic is any less fundamental than first order logic)for the opposite is
also true. First order logic can be interpreted as a theory of propos-
itional operator logic—-as an extension, in fact, of the theory of four
Kripke operators.

Does it make any practical difference whether modal‘systems are viewed
as theories of operator logic or as logics in their own right? Perhaps
not, but I suspect that the view that modal systems are intended to supple-
ment or supflant classical 1§gic has encouraged unnecessary antagonism
towards them. Certainly the great variety of alethic and deontic modal
systems would be embarrassing to someone who thinks of these systems as
constituting the logic qf necessity and obligation. This embarrassment
is removed when fhe modal systems are viewed as theories characterizing
different kinds of necessity and obligation. There are, after all, a
aumber 'of theories of '« ' corresponding to different kinds of ordering
relations. I also suspect that the view that modal systems are logics
influenced the kind of problems which have interested workeré in the field.
A great deal of the technical work in modal logic is based on an analogy
with predicate logic that 1inks box with the logical expressioﬁs rather
than with the predicates. To mention just one example, there have been
extensive investigations of the interpolation property for modal systems.l3
But all this work concerns the existence of interpolants sharing only

predicates with the antecedent and consequent of a conditional, rather

2
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than interpolants sharing predicates and operators. Finally, since not
all of its theories are extension of E, operator logic might provide a
framework to deal with concepts that have not been satisfactorily

treated as modal systems. It would admit, for example, theories of real-
istic belief and knowledge, i.e., belief and knowledge not closed under
logical equivalence.

The theme of this paper has been that the question of what is logical
is a philosophical question which ought not to be decided on purely formal
grounds. I have argued in particular that modalities need not be treated
either as logical operators or as nonlogical predicates. I have described
a framework which I call operator logic within which modal systems can be
preserved intact as theories. Operator logic need not contain any new
logical principles, but it can accommodate such principles if we decide
they are needed. Finally, T have suggested that to view modal systems
as theories of operator logic might be more sound philosophically and

more fruitful mathematically than to view them in the traditional way§,
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