NUMEERS WITHOUT ONES
 by STEVEN T. KUHN and ANDREW VOGT Departments of Philosophy and Mathematics
 Georgetown University
 Washington, D. C. 20057
 (Submitted February 1990)

1. INTRODUCTION

We report solutions to the following general problem:

Abstract

Fix a base b and a positive integer k. Does every set of positive integers $\left\{x_{1}, \ldots, x_{k}\right\}$ have an integer multiplier $m \geq 1$ such that none of $m x_{1}, \ldots, m_{k}$ contains the digit 1 in various positions of its base b representation?

It has been known for more than a century ([1], p. 454) that every positive integer x has a multiple mx consisting of repetitions of any prescribed string of digits followed perhaps by zeros. But the structure of a set of numbers $\left\{\mathrm{mx}_{1}, \ldots, \mathrm{mx}_{\mathrm{k}}\right\}$ is not so easy to stipulate, even if we merely require that the digits differ from 1. Related questions are discussed in [1] Chapter XX, [2] Chapter IX, and, in connection with the generation of pseudorandom numbers, [3] Section 3.2.

2. SUMMARY OF RESULTS

Let the base b be a positive integer ≥ 2, and let the variables $k, m, n, x_{1}, \ldots, x_{k}$ denote positive integers. Our results are the following:

RESULT 1: i) If $2^{k}<b$, then for any set $\left\{x_{1}, \ldots, x_{k}\right\}$ there is an m such that none of $\mathrm{mx}_{1}, \ldots, \mathrm{mx}_{\mathrm{k}}$ has leftmost digit 1 .
ii) If $2^{k} \geq b$, then there exist sets $\left\{x_{1}, \ldots, x_{k}\right\}$ such that for any m at least one of $m x_{1}, \ldots, m x_{k}$ has leftmost digit 1 .

RESULT 2: i) If b is not a prime power, or if $b=p^{n}$ for some prime p and $k<n\left(p^{n}-p^{n-1}\right)$, then for any set $\left\{x_{1}, \ldots, x_{k}\right\}$ there is an m such that none of $m x_{1}, \ldots, m_{k}$ has rightmost nonzero digit 1.
ii) If $b=p^{n}$ and $k \geq n\left(p^{n}-p^{n-1}\right)$, then there exist sets $\left\{x_{1}, \ldots, x_{k}\right\}$ such that for any m at least one of $m x_{1}, \ldots, m x_{k}$ has rightmost nonzero digit 1 .

RESULT 3: If $k \leq b-2$ when b is prime, or $k \leq$ the smallest prime factor of b when b is not prime, then for any n and any set $\left\{x_{1}, \ldots, x_{k}\right\}$ there is an m such that none of $m x_{1}, \ldots, m x_{k}$ has the digit 1 among its n rightmost nonzero digits (a string of consecutive digits the last of which is the rightmost nonzero digit of the number).

3. THE LEFTMOST DIGIT CASE

Given a set of positive integers x_{1}, \ldots, x_{k}, we express them in scientific notation by $x_{i}=a_{i} b^{k_{i}}$ with k_{i} in $\{0,1,2, \ldots\}$ and a_{i} in $[1, b) \cap Q$, and we order them so that $a_{1} \leq \cdots \leq a_{k}$.

Proposition 3.1: Let b be ≥ 3. The following are equivalent:

> for each integer $m \geq 1$ at least one of $\mathrm{mx}_{1}, \ldots, \mathrm{mx}_{\mathrm{k}}$ has leftmost digit equal to 1 :
and

$$
\begin{equation*}
\frac{b}{2} \leq \frac{a_{k}}{a_{1}} \text { and } \frac{a_{i+1}}{a_{i}} \leq 2 \text { for } a l l i=1, \ldots, k-1 . \tag{3.1.2}
\end{equation*}
$$

Proof: Suppose (3.1.1) fails for some m. Then each $m x_{i}$ has leftmost digit ≥ 2. Choose j such that $2 b^{j} \leq x_{1}<b^{j+1}$, and let n $=j-k_{1}$. If (3.1.2) is true, an induction shows that $m a_{i}<b^{n+1}$ for each $i\left(m a_{i+1} \leq 2 m a_{i}<2 b^{n+1}\right.$ implies ma $\left.{ }_{i+1}<b^{n+1}\right)$. This gives a contradiction since $2 b^{n+1} \leq m b a_{1} \leq 2 m a_{k}<b^{n+1}$.

Conversely, suppose (3.1.2) fails. If $a_{j+1}>2 a_{j}$ for some j, set $m_{i}=k_{i}$ for $i \leq j$ and $m_{i}=k_{i}+1$ for $i>j$. Then it is straightforward to verify that the inequalities $a_{1} \leq \ldots \leq a_{j}<$ $\frac{a_{j+1}}{2} \leq \cdots \leq \frac{a_{k}}{2}$ can be rewritten as:

$$
\begin{equation*}
\max \left\{\frac{2 b^{m_{i}}}{x_{i}}: 1 \leq i \leq k\right\}<\min \left\{\frac{b^{m_{i}+1}}{x_{i}}: 1 \leq i \leq k\right\} \tag{3.1.3}
\end{equation*}
$$

(3.1.3) is also true when $\frac{b}{2}>\frac{a_{k}}{a_{1}}$ provided $m_{i}=k_{i}$ for every i. Accordingly we can find rational numbers of the form $\frac{m}{b q}$ strictly between the two bounds in (3.1.3). Then $2 b^{m_{i}+q}<m x_{i}<b^{m_{i}+q+1}$ for all i and (3.1.1) fails.

Part i) of Result 1 is an immediate consequence of 3.1 since (3.1.1) can only be true if $\frac{b}{2} \leq \frac{a_{k}}{a_{1}}=\left(\frac{a_{2}}{a_{1}}\right) \cdot \ldots \cdot\left(\frac{a_{k}}{a_{k-1}}\right) \leq 2^{k-1}$, and this cannot occur if $2^{k}<b$.
A set Y is called a multiple of $\left\{X_{1}, \ldots, x_{k}\right\}$ if and only if Y $=\left\{m x_{1}, \ldots, m x_{k}\right\}$ for some positive integer m. y is called a ouasimultiple (in base b) of $\left\{x_{1}, \ldots, x_{k}\right\}$ if and only if $y=$ $\left\{m^{\prime} \cdot x_{1} \cdot b^{n(1)}, \ldots, m^{\prime} \cdot x_{k} \cdot b^{n(k)}\right\}$ where m^{\prime} is a positive integer and $n(1), \ldots, n(k)$ are nonnegative integers. For example, $\{6,9,15\}$ is a multiple of $\{2,3,5\}$, and $\{9,600,150\}$ is a quasimultiple (in base 10) of $\{2,3,5\}$.

Part ii) of Result 1 follows from the next proposition.

Proposition 3.2: Let $2^{k} \geq$ b. Then every quasimultiple $\left\{x_{1}, \ldots, x_{k}\right\}$ of $\left\{1,2, \ldots, 2^{k-1}\right\}$ has property (3.1.1). There are other sets with this property if and only if $2^{k}>b$.

Proof: The set $T=\left\{1,2, \ldots, 2^{k-1}\right\}$ satisfies (3.1.2) if $2^{k} \geq b$. Hence it satisfies (3.1.1). Since (3.1.1) is preserved under quasimultiplication (multiplication by powers of b merely adjoins zeros on the right), quasimultiples of T also satisfy (3.1.1).

If $\left\{x_{1}, \ldots, x_{k}\right\}$ has property (3.1.1) and is indexed as in Proposition 3.1 , then (3.1.2) can be rewritten as:

$$
\begin{equation*}
1 \leq \frac{a_{i+1}}{a_{i}} \leq 2 \quad, \frac{b}{2} \leq\left(\frac{a_{2}}{a_{1}}\right) \cdot \ldots \cdot\left(\frac{a_{k}}{a_{k-1}}\right) \leq 2^{k-1} \tag{3.2.1}
\end{equation*}
$$

If $2^{k}=b, \frac{a_{i+1}}{a_{i}}$ must equal 2 for each i. Then $x_{i}=2^{i-1} a_{1} b^{k}{ }_{i}$ for each i where $a_{1}=\frac{x_{1}}{b^{k_{1}}}$ is a fraction of the form $\frac{m}{2 q}$ with modd. It follows easily that $x_{i}=m \cdot 2^{m_{i}}$ where each m_{i} is a distinct integer mod k. Hence $\left\{x_{1}, \ldots, x_{k}\right\}$ is a quasimultiple of T. on the other hand, if $2^{k}>b$, we can choose fractions $r_{i}=\frac{a_{i+1}}{a_{i}}$ satisfy-
ing (3.2.1) with each inequality satisfied strictly and the product less than $\min \left\{b, 2^{k-1}\right\}$. We also choose a fraction $a_{1} \geq 1$ such that $a_{1} \cdot r_{2} \cdot \ldots \cdot r_{k}<b$. All of these fractions can be taken to have the form $\frac{m}{b q}$ with m odd. Multiplying each $a_{i}=$ $a_{1} \cdot r_{2} \cdot \ldots \cdot r_{i} b y$ the smallest power of b that makes the product an integer, we get x_{i} 's satisfying (3.1.2) and hence (3.1.1). Since each x_{i} is odd, $\left\{x_{1}, \ldots, x_{k}\right\}$ cannot be a quasimultiple of T.

4. THE RIGHTMOST DIGIT CASE

Proposition 4.1: Let b be neither a prime nor a prime power. Then for any set of positive integers x_{1}, \ldots, x_{k} there is an integer m ≥ 1 such that none of $m x_{1}, \ldots, m_{k}$ has rightmost nonzero digit 1 .

Proof: Express b as the product of two relatively prime integers r and s greater than 1. Let t be the highest power of r that occurs in any of x_{1}, \ldots, x_{k}, and let $m=s^{t+1}$.

If for some i the rightmost nonzero digit of $m x_{i}$ is 1 , then $m x_{i}=s^{t+1} x_{i} \equiv b^{n-1}\left(\bmod b^{n}\right)$ for some positive integer n. So r^{n-1} divides x_{i} and $n-1 \leq t$. Removing the common factor s^{n-1} from the equation above, we conclude that s divides a power of r. Since this is impossible, all of the integers mix have rightmost nonzero digit distinct from 1.

Proposition 4.2: Let $b=p^{n}$ where p is a prime. Then the following are equivalent:
for each integer $m \geq 1$ at least one of $\mathrm{mx}_{1}, \ldots, \mathrm{mx}_{\mathrm{k}}$ has rightmost nonzero digit $1 ;$
and
for each positive integer c in $\{1, \ldots, b-1\}$ that is relatively prime to p and each integer i in
$\{0, \ldots, n-1\}$, there is an x in $\left\{x_{1}, \ldots, x_{k}\right\}$ such
that $y=c p^{i}\left(\bmod p^{n+i}\right)$ where y is the quotient
obtained by dividing x by the highest power of b in x.

Proof: Suppose that (4.2.2) holds. To establish (4.2.1), we assume without loss of generality that m is a positive integer not divisible by b. Then $m=a p^{s}$ where a is a positive integer not divisible by p and $0 \leq s \leq n-1$. Because a and b are relatively prime, there are integers c and d such that ac $+b d=1$ with $1 \leq c \leq b-1$. If $s=0$, let $i=0$ and choose x, y as in (4.2.2) so that $y \equiv c(\bmod b)$. Then $m y=\operatorname{mc}=1$ (mod b). So my has rightmost digit 1 , and (4.2.1) holds for $m x$. If $s \geq 1$, let i $=n-s$ and choose x, y as in (4.2.2) so that $y=p^{n-s}$ (mod $\left.p^{2 n-s}\right)$. Then my $=a c p^{n}\left(\bmod p^{2 n}\right)=p^{n}\left(\bmod p^{2 n}\right)=b\left(\bmod b^{2}\right)$. Thus my has its two rightmost digits equal to 10 , mx has rightmost nonzero digit 1 , and (4.2.1) holds.

Conversely, suppose (4.2.1) holds. Remove all powers of b from each x_{i}, and the resulting set $\left\{Y_{i}, \ldots, Y_{k}\right\}$ still satisfies (4.2.1) with none of the Y_{i} 's divisible by b. Let c be any integer from 1 to $b-1$ relatively prime to p. Choose integers a and d such that $a c+b d=1$ and $1 \leq a \leq b-1$. Let $m=a p^{n-i}$ with 0 $\leq i \leq n-1$, and by $(4.2 .1)$ choose y in $\left\{Y_{1}, \ldots, Y_{k}\right\}$ such that my
has rightmost nonzero digit 1 . Then $m y=a p^{n-i} y=b^{s}$ (mod b^{s+1}) for some $s \geq 0$. Since p does not divide a and b does not divide $y, s=1$ and p^{i} divides y. Then $a y=p^{i}\left(\bmod p^{n+i}\right)$, and $y=$ $(a c+b d) y=c p^{i}\left(\bmod p^{n+i}\right)$, as required in (4.2.2).

Corollary 4.3: Let $b=p^{n}$. Then there exist sets $\left\{x_{1}, \ldots, x_{k}\right\}$ such satisfying (4.2.1) if and only if $k \geq n\left(p^{n}-p^{n-1}\right)$.

Proof: The number of positive integers c in (1,...,b-1) relatively prime to p is $p^{n}-p^{n-1}$, and the number of equations of the form $y=c p^{j}\left(\bmod p^{n+j}\right)$, with c as above and $0 \leq j \leq n-1$, is $n\left(p^{n}-p^{n-1}\right)$. It is easy to see that no integer y satisfies two different equations of this form. Thus (4.2.2), and hence (4.2.1), can be satisfied precisely when $k \geq n\left(p^{n}-p^{n-1}\right)$.

Parts i) and ii) of Result 2 follow at once from Proposition 4.1 and Corollary 4.3.

5. STRINGS OF RIGHTMOST DIGITS

Lemma 5.1: Let $\left(z_{1}, \ldots, z_{k}\right)$ be an ordered k-tuple of positive integers satisfying

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{gcd}\left(b, z_{i}\right) \leq b-2 . \tag{5.1.1}
\end{equation*}
$$

Then for every ordered k-tuple (y_{1}, \ldots, y_{k}) of integers, there is an integer m in $\{1, \ldots, b-1\}$ such that none of the equations

```
NUMBERS WITHOUT ONES page 8
    mzi}=\mp@subsup{Y}{i}{}(\operatorname{mod}b)\quadi=1,\ldots,k (5.1.2
```

is true.
If it is assumed that

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{gcd}\left(b, z_{i}\right) \leq b-1, \tag{5.1.3}
\end{equation*}
$$

the conclusion above holds for some integer m in $\{0, \ldots, b-1\}$.

Proof: By elementary number theory ([4], p. 102) the equation $m z_{i}$ $=Y_{i}(\bmod b)$ has a solution m in the integers mod b if and only if Y_{i} is divisible by $g c d\left(b, z_{i}\right)$. When such a solution exists, there are exactly $\operatorname{gcd}\left(b, z_{i}\right)$ of them. If we assume the worst, then equations (5.1.2) all have distinct solutions. This leaves $\left[b-1-\sum \underset{i=1}{k} \operatorname{gcd}\left(b, z_{i}\right)\right](>0)$ integers m among the integers $1,2, \ldots, b-1$ to satisfy the conditions of the lemma.

The last statement is proved similarly.

The n rightmost nonzero digits of x refers to the string of n successive digits in \mathbf{x} whose rightmost member is the rightmost nonzero digit of x. Thus, for example, in base 10 the three rightmost nonzero digits of 740,500 are 405 .

Proposition 5.2: Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of positive integers whose rightmost nonzero digits satisfy (5.1.1), and let n be a positive integer. Then there exists an integer m in $\left\{1, \ldots, b^{n}-1\right\}$ such that none of $\mathrm{mx}_{1}, \ldots \mathrm{mx}_{\mathrm{k}}$ has the digit 1 among its n rightmost nonzero digits.

Proof: Let z_{1}, \ldots, z_{k} be the rightmost digits of x_{1}, \ldots, x_{k}, none of them zero without loss of generality. By Lemma 5.1 choose m_{0}, the rightmost digit of m, in $\{1, \ldots, b-1\}$ so that the equations
$m_{0} z_{i}=1(\bmod b) \quad$ for i such that $\operatorname{gcd}\left(b, z_{i}\right)=1$
$m_{0} z_{i}=0(\bmod b) \quad$ for i such that $\operatorname{gcd}\left(b, z_{i}\right)>1$
($i=1, \ldots, k$) are all false. Then $m_{0} z_{i}(\bmod b)$, the rightmost digit of $m x_{i}$, is in the set $(2, \ldots, b-1)$ for each i.

If the first j digits of m from right to left $-m_{0}, \ldots, m_{j-1}-$ have already been chosen, then the $(j+1)^{\text {th }}$ digit of $m x_{i}$ will equal $m_{j} z_{i}+u_{i j}(\bmod b)$, where $u_{i j}$ is an integer depending on the first j digits of m and x_{i} and the $(j+1)^{\text {th }}$ digit of x_{i}. By Lemma 5.1 choose m_{j} in $\{1, \ldots, b-1\}$ so that none of the equations $m_{j} z_{i}=1-u_{i j}(\bmod b), i=1, \ldots, k$, holds. For $j \geq n$, set $m_{j}=$ 0 . Then m is as required.

Proof of Result 3: Let q be the smallest prime factor of b. The rightmost nonzero digits z_{i} of x_{i} satisfy $\operatorname{gcd}\left(b, z_{i}\right) \leq \frac{b}{q}$. If

$$
\begin{equation*}
k \cdot\left(\frac{b}{q}\right) \leq b-2, \tag{5.3.1}
\end{equation*}
$$

then (5.1.1) is true and Proposition (5.2) yields Result 3.
When b is prime or $\mathrm{k} \leq \mathrm{q}-1$, the hypotheses in Result 3 ensure that (5.3.1) holds. Thus we need only consider the case when b is composite and $\mathrm{k}=\mathrm{q}$.

Suppose until further notice that $\operatorname{gcd}\left(b, z_{i}\right)$ is smaller than b / q for at least one i. Then the left side of (5.1.1) is bounded
above by $(q-1)(b / q)+r^{\prime}$ where r^{\prime} is the second largest factor of b, the largest being $r=b / q$. If $r^{\prime} \leq r-2$, (5.1.1) applies again. If not, $b=6$ or 4 .

If $b=6$, then $q=2$ and $\left\{z_{1}, z_{2}\right\}$ is a pair. Either $m_{0}=1$ fails to satisfy each of the two equations (5.2.1) or else one of z_{1} and z_{2} is 1 . In the latter case, $\operatorname{gcd}\left(b, z_{1}\right)+\operatorname{gcd}\left(b, z_{2}\right) \leq 3+1$ $\leq 6-2$, and (5.1.1) is fulfilled. In the former case, the induction in Proposition 5.2 can proceed using (5.1.3) since $\operatorname{gcd}\left(b, z_{1}\right)+\operatorname{gcd}\left(b, z_{2}\right) \leq 3+2 \leq 6-1$ and m_{j} can be chosen equal to zero if necessary (for $j \geq 1$).

If $b=4$, then $q=2$ again. An argument similar to the last one applies except when $\left\{z_{1}, z_{2}\right\}=\{1,2\}$. Then $m_{0}=3$ can be used to falsify equations (5.2.1), and $2+1 \leq 4-1$ insures that (5.1.3) applies to the later digits of m.

Finally, suppose $\operatorname{gcd}\left(b, z_{i}\right)=r$ for each $i=1, \ldots, q$. Then each $x_{i}=y_{i} r^{s}$ with $s \geq 1$, where r^{s} is the largest power of r dividing all x_{i}. Then $\left\{Y_{1}, \ldots, y_{q}\right\}$ is covered by the earlier arguments since not all y_{i} 's are divisible by r. If none of my $, \ldots, \mathrm{myq}_{\mathrm{q}}$ has 1 's among the n rightmost digits, the same is true for $\left(q^{s} m\right) x_{1}, \ldots,\left(q^{s} m\right) x_{q}=m y_{1} b^{s}, \ldots, m q_{q} b^{s}$.

6. FURTHER QUESTIONS

1. To what extent do these results apply to other digits (or strings of digits) and other positions? For example, under what conditions can we ensure that the two rightmost nonzero digits
differ from 1 ?
2. Can the hypotheses of Result 3 be weakened, or are they necessary as well as sufficient?
3. What are the smallest multipliers needed in Results 1, 2 , and 3? The proofs provide upper bounds, but calculations suggest that much smaller multipliers will often suffice.
4. Under what conditions can l's be eliminated in every position? Result 1 shows that $2 \mathrm{k}<\mathrm{b}$ is a necessary condition. However, even the following elementary question remains unanswered for bases > 4: are there numbers x and y such that for every m at least one of $m x$ or my contains the digit 1 ?

Reference

[1] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Divisibility and Primality. Washington, D. C.: Carnegie Institute of Washington, 1919.
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth Edition. Oxford: Oxford University Press, 1979.
[3] D. E. Knuth, The Art of Computer Programming, Vol. 2 , Seminumerical Algorithms. Reading, Mass.: Addison-Wesley, 1969.
[4] K. H. Rosen, Elementary Number Theory and Its Applications. Reading, Mass.: Addison-Wesley, 1984.

