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1. INTRODUCTION

We report solutions to the following general problem:

Fix a base b and a positive integer k. Does every set of
positive integers (x;,...,xXx} have an integer multiplier
m > 1 such that none of mx;,...,mxy contains the digit 1

in various positions of its base b representation?

It has been known for more than a century ([1], p. 454) that
every positive integer x has a multiple mx consisting of repeti-
tions of any prescribed string of digits followed perhaps by
zeros. But the structure of a set c¢f numbers {mx3,...,mxx} is not
so easy to stipulate, even if we merely require that the digits
differ from 1. Related questions are discussed in [1] Chapter XX,
[2] Chapter IX, and, in connection with the generation of pseudo-

random numbers, [3] Section 3.2.

2. SUMMARY OF RESULTS

Let the base b be a positive integer > 2, and let the
variables k,m,n,x;,...,Xx denote positive integers. Our results

are the following:
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RESULT 1: i) If 2k < b, then for any set {X3,...,Xx} there is an
m such that none of mXj,...,MXy has leftmost digit 1.

ii) 1f£ 2K > b, then there exist sets {X1,...,Xx} such that
for any m at least one of mxj,...,mx) has leftmost digit 1.
RESULT 2: i) If b is not a prime power, or if b = p? for some
prime p and k < n(p"® - p" %), then for any set {Xj,...,Xx} there
is an m such that none of mxjy,...,mXx has rightmost nonzero digit
1.

ii) If b = pM and k > n(pn - pn-l), then there exist sets
{X7,...,%Xx} such that for any m at least one of mXjy,...,mXy has

rightmost nonzero digit 1.

RESULT 3: If k < b - 2 when b is prime, or k < the smallest prime
factor of b when b is not prime, then for any n and any set
{X1,...,Xx} there is an m such that none of mxXj,...,mXx has the
digit 1 among its n rightmost nonzero digits (a string of
consecﬁtive digits the last of which is the rightmost nonzero

digit of the number).

3. THE LEFTMOST DIGIT CASE

Given a set of positive integers X1, «.+, Xk, We express them
in scientific notation by xj = aibki with k; in {(0,1,2,...} and

aj in [1,b)nQ, and we order them so that a; < ... < ay.
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Proposition 3.1: Let b be > 3. The following are equivalent:

for each integer m > 1 at least one of

(3.1.1)
m¥3,...,mXx has leftmost digit equal to 1;
and
a a.._ .
g < — and 1td <2 for all i =1,...,k-1. (3.1.2)

Proof: Suppose (3.1.1) fails for some m. Then each mxi has

leftmost digit > 2. Choose j such that 2b7 < %3 < bj+1, and let n

= 3J - k3. If (3.1.2) is true, an induction shows that maj < pntl
. n+l ., . n+l .
for each i <mai+l < Zmai < 2b implies ma, , < b ). This
gives a contradiction since 2p"*?! < mbaj < 2may < ptl,
Conversely, suppose (3.1.2) fails. If aj+1 > 2aj for some j,
set mj = k; for i < j and mj = kj+1 for i > j. Then it is
straightforward to verify that the inequalities a; < ... < aj <
a' a
—%i; < ... < 55 can be rewritten as:
2p™i . . phit? .
max { —-— : 1<i<k } < min { - ! 1<i<k} (3.1.3)
i i -
b %
(3.1.3) is also true when > > ~a provided mj = ki for every i.
1

Accordingly we can find rational numbers of the form —%q strictly
between the two bounds in (3.1.3). Then 2pTitd nxy < bmi+q+l

for all i and (3.1.1) fails. n

Part i) of Result 1 is an immediate consequence of 3.1 since
a a a

b _ %k _ %2, | % k-1

3 S 35 =) (=) < 2

<

a
b.

(3.1.1) can only be true if ,

1 1
and this cannot occur if 2K
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A set Y is called a multiple of {X1,...,%xx}) if and only if Yy
= {(mx3,...,mxx} for some positive integer m. Y is called a

quasimultiple (in base b) of {X3,+..,%x} if and only if Y =

(m' xq - p" (1) n (k)

ceo,m'*Xy'b } where m' is a positive integer and
n(l),...,n(k) are nonnegative integers. For example, (6,9,15} is
a multiple of {2,3,5}, and {9,600,150} is a quasimultiple (in
base 10) of (2,3,5}.

Part ii) of Result 1 follows from the next proposition.

Proposition 3.2: Let 2K > b. Then every quasimultiple {X1,...,%K)
k
;2

of (1,2,... -1} has preoperty (3.1.1). There are other sets with

this property if and only if 2K > b.

k
;2

Proof: The set T = (1,2,...,2° ') satisfies (3.1.2) if 2K > b.

Hence it satisfies (3.1.1). Since (3.1.1) 1is preserved under
quasimultiplication (multiplication by powers of b merely adjoins
zeros on the right), quasimultiples of T also satisfy (3.1.1).

If (x3,...,Xx}) has property (3.1.1) and is indexed as in

Proposition 3.1, then (3.1.2) can be rewritten as:

a.
15 _‘1+_1<2 '
i

1 kes
mky

[

ax k-1
a

< (FH) ez ) < 2 . (3.2.1)
k-1

a. .
t:l must equal 2 for each i. Then xj = 2t 1albkl for
i X
each i where a; = N is a fraction of the form ~Eq with m odd.
pX1 2

It follows easily that x; = m'2™ where each mj is a distinct

If 2k

b,

integer mod k. Hence {X1,...,%Xx} is a quasimultiple of T. On the

i+1

other hand, if 2X > b, we can choose fractions ry = satisfy-
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ing (3.2.1) with each inequality satisfied strictly and the

product less than min {b,2k"1

}. We also choose a fraction a; > 1
such that aj‘ry-...'ry < b. All of these fractions can be taken
to have the form *%q with m odd. Multiplying each a;j =
a;°'rz*...'rij by the smallest power of b that makes the product an

integer, we get xi's satisfying (3.1.2) and hence (3.1.1). Since

each xj 1s odd, {X1,..-,%x} cannot be a quasimultiple of T. =

4. THE RIGHTMOST DIGIT CASE

Proposition 4.1: Let b be neither a prime nor a prime power. Then
for any set of positive integers X1,++-+,Xx there is an integer m

> 1 such that none of mXj,...,NXy has rightmost nonzero digit 1.

Proof: Express b as the product of two relatively prime integers
r and s greater than 1. Let t be the highest power of r that
occurs in any of X1r+++¢Xk, and let m = st+1.

If for some i the rightmost nonzero digit of mxi is 1, then

t+1 1l

n- n-1
mxi = 8 Xi = b

(mod bn) for some positive integer n. So r
divides xj; and n - 1 < t. Removing the common factor s % from
the equation above, we conclude that s divides a power of r.
Since this is impossible, all of the integers mx4{ have rightmost

nonzero digit distinct from 1. =

Proposition 4.2: Let b = pl where p is a prime. Then the follow-

ing are equivalent:
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for each integer m > 1 at least one of

mxjq,...,mXy) has rightmost nonzero digit 1; (4-2-1)
and

for each positive integer c¢ in (1,...,b-1) that

is relatively prime to p and each integer i in

{0,...,n-1}, there is an x in {X1,+..,Xx} such (4.2.2)

that y = cpl (mod pn+l) where y is the quotient

obtained by dividing x by the highest power of b in x.

Proof: Suppose that (4.2.2) holds. To establish {(4.2.1), we
assume without loss of generality that m is a positive integer
not divisible by b. Then m = ap® where a is a positive integer
not divisible by p and 0 < s < n-1. Because a and b are rela-
tively prime, there are integers c and d such that ac + bd = 1
with 1 < ¢ < b-1. If s = 0, let i = 0 and choose X,y as in
(4.2.2) so that y = ¢ (mod b). Then my = mC = 1 (mod b). So my
has rightmost digit 1, and (4.2.1) holds for mx. If s > 1, let 1

= n - s and choose x,y as in (4.2.2) so that y = cp” % (mod

p2n-s). Then my = acp” (mod p°") = p" (mod p®™) = b (mod b?).
Thus my has its two rightmost digits equal to 10, mx has right-
most nonzero digit 1, and (4.2.1) holds.

Conversely, suppose (4.2.1) holds. Remove all powers of b
from each x;, and the resulting set {Yi,.--,¥Yk} still satisfies
(4.2.1) with none of the Yi's divisible by b. Let ¢ be any
integer from 1 to b-1 relatively prime to p. Choose integers a

and d such that ac + bd = 1 and 1 < a < b-1. Let n = apn—l with 0

< i < n-1, and by (4.2.1) chocse Y in {Y1,-+.,Ykx) such that my
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has rightmost nonzero digit 1. Then my = apn-iy = b° (mod bs+1)
for some s > 0. Since p does not divide a and b does not divide
Yy, s = 1 and pi divides y. Then ay = pi (mod pn+i), and y =

n+i

(ac + bd)y = cpl (mod p ), as reguired in (4.2.2). ]

Corollary 4.3: Let b = pn. Then there exist sets {xX7,...,%Xx} such

satisfying (4.2.1) if and only if k > n(p" - p"™%).

Proof: The number of positive integers c¢ in {1,...,b=1} rela-
tively prime to p is pn - pn-l, and the number of equations of
the form y = cpj (mod pn+j), with c as above and 0 < j < n-1, is
n(pn - pn'l). It is easy to see that no integer y satisfies two
different equations of this form. Thus (4.2.2), and hence

(4.2.1), can be satisfied precisely when k > n(pn - pn—l). -

Parts i) and ii) of Result 2 follow at once from Propocsition

4.1 and Corollary 4.3.

5. STRINGS OF RIGHTMOST DIGITS

Lemma 5.1: Let (z;,...,2Zx) be an ordered k-tuple of positive

integers satisfying

y i=]1( gcd(b,zj) < b - 2. (5.1.1)

Then for every ordered k-tuple (Y1,...,Yk) of integers, there is

an integer m in {1,...,b-1} such that none of the equations
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mzy = y; (mod b) i=1,...,k (5.1.2)

is true.

If it is assumed that

L o;-X ged(b,z) < b -1, (5.1.3)
the conclusion above holds for some integer m in (0,...,b-1).

Proof: By elementary number theory ([4]), p. 102) the equation mz 3
= yj (mod b) has a solution m in the integers mod b if and only
if yj is divisible by gcd(b,zj). When such a solution exists,
there are exactly gcd(b,zi) of them. If we assume the worst, then
equations (5.1.2) all have distinct solutions. This leaves

(b - 1 - 7% k gcd(b,zi)] (> 0) integers m among the integers

i=1
1,2,...,b-1 to satisfy the conditions of the lemma.
The last statement is proved similarly. ]

The n rightmost nonzero digits of x refers to the string of n

successive digits in x whose rightmost member is the rightmost
nonzero digit of x. Thus, for example, in base 10 the three

rightmost nonzerc digits of 740,500 are 405.

Proposition 5.2: Let (x;,...,%xx}) be a set of positive integers
whose rightmost nonzero digits satisfy (5.1.1), and let n be a
positive integer. Then there exists an integer m in (1,...,b"-1)

such that none of mx;,...mxy has the digit 1 among its n right-

most nonzero digits.
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Proof: Let 2z;,...,zx be the rightmost digits of X1++++,Xx, none
of them zero without loss of generality. By Lemma 5.1 choose mg,

the rightmost digit of m, in (1,...,b-1) so that the equations

mgzy = 1 (mod b) for i such that gcd(b,zy) =1
(5.2.1)
mgz; = 0 (mod b) for i such that ged(b,zy) > 1
(i = 1,...,kK) are all false. Then mpgz; (mod b), the rightmost
digit of mxj, is in the set (2,...,b-1} for each i.
If the first 3 digits of m from right to left - Mo, e eo Myoy=

have already been chosen, then the (j+1)th digit of mxj will
equal myzj + ujj (mod b), where Uiy is an integer depending on

the first j digits of m and xj and the (j+1)th digit of xj. By

Lemma 5.1 choose my in {(1,...,b-1) so that none of the egquations
myz; = 1 - ujj (mod b), i =1,...,k, holds. For j > n, set my =
0. Then m is as required. ™

Proof of Result 3: Let g be the smallest prime factor of b. The

rightmost nonzero digits z; of xj satisfy gcd(b,zy) < g. Iif

k'(g) <b -2, (5.3.1)

then (5.1.1) is true and Proposition (5.2) yields Result 3.

When b is prime or k < g - 1, the hypotheses in Result 3
ensure that (5.3.1) holds. Thus we need only consider the case
when b is composite and k = q.

Suppose until further notice that gcd(b,z3) is smaller than

b/q for at least one i. Then the left side of (5.1.1) is bounded
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above by (g - 1)(b/q) + r' where r' is the second largest factor
of b, the largest being r = b/q. If r' < r - 2, (5.1.1) applies
again. If not, b = 6 or 4.

If b = 6, then q = 2 and (z;,2z;} is a pair. Either mg = 1
fails to satisfy each of the two equations (5.2.1) or else one of
zq1 and z, is 1. In the latter case, gcd(b,z3) + gcd(b,z3) < 3 + 1
< 6 - 2, and (5.1.1) is fulfilled. In the former case, the
induction in Proposition 5.2 can proceed using (5.1.3) since
gcd(b,zq) + gcd(b,z5) < 3 + 2 < 6 - 1 and my can be chosen equal
to zero if necessary (for j > 1).

If b = 4, then g = 2 again. An argument similar to the last
one applies except when {z3,22} = {(1,2}. Then mg = 3 can be used
to falsify equations (5.2.1), and 2 + 1 < 4 - 1 insures that

(5.1.3) applies to the later digits of m.

Finally, suppose gcd(b,zj) = r for each i = l1,...,9. Then
each x; = y;irS with s > 1, where r® is the largest power of r
dividing all xj. Then {yl,...,yq} is covered by the earlier

arguments since not all yj's are divisible by r. If none of
myi,...,Myg has 1's among the n rightmost digits, the same is

true for (qsm)xl,...,(qsm)xq = mylbs,...,myqbs. n

6. FURTHER QUESTIONS

1. To what extent do these results apply to other digits (or
strings of digits) and other positions? For example, under what

conditions can we ensure that the two rightmost nonzero digits
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differ from 1?

2. Can the hypotheses of Result 3 be weakened, or are they
necessary as well as sufficient?

3. What are the smallest multipliers needed in Results 1, 2,
and 3?7 The proofs provide upper bounds, but calculations suggest
that much smaller multipliers will often suffice.

4. Under what conditions can 1's be eliminated in every
position? Result 1 shows that 2k < b is a necessary condition.
However, even the following elementary question remains un-

answered for bases > 4: are there numbers x and Y such that for

every m at least one of mx or my contains the digit 17?
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