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I. Introduction

The problem with which this paper is concerned is that of axi-
omatizing predicate functor logic. Predicate functor logic is a
natural, variable-free equivalent of predicate logic which has been
developed by Professor Quine in a series of papers including "Towards
a Calculus of Concepts" (JSL, 1936), "Variables Explained Away"

(Proceedings of the American Philosophical Society, 1960), "Algebraic

Logic and Predicate Functors" (Logic and Art, 1971) and "Predicate

Functoi§ Revisited" (forthcoming). In this system, the work of the
variable is done by an assortment of functors, which attach to

predicates to form new predicates. For example pad (''[") and crop

a#ac_ h
("1") are functors whichAto n-ary predicates to form @Hﬂ}ary and
{n~§~ary predicates, respectively. If A 1is an n-ary predicate
then [A holds of objects dl""’dn+l just in case A holds of

d,,...,d and JA holds of 4 d just in case A holds of
4 n-1

l,...,

d ,...,d for some object do. Functors also do the work of

o n-1
connectives. Thus A - B 1is a predicate which is true of dl""’dn

just in case either A 1is false of d .,dn or B is true of

120"

d ..,dn. A predicate is valid if it holds of any sequence of objects.

1
The axiomatization problem is that of axiometizing the valid predicates.
Quine considers the problem in the "Algebraic logic' paper. He cites
some simple schemas like 'A - [JA'" and ']J[A ~2' as examples of

the kind of axioms that will probably be needed and announces that

the compilation of a complete set of such axioms is "a major agendum."

Some time ago I wrote a paper called "An Axiomatization of Predicate



Functor Logic" (henceforth "APL") in which I tried to give such an
axiomatization. APL provides an explicit formal semantics for
predicate functor logic and applies a Henkin—styie argument to obtain
completeness. I have never been entirely satisfied, however, with the

axiomatization that results. The axioms use a special abbreviatory
device, 7. For every sequence k}""’kn of numbers, 7‘(&1,...,k;>
js a complicated string of functors. 7 3,4,27, for example, contains
‘more than thirty primitive functors. The axiom schemas Cuine had

‘suggested contain three or four functors each. My axiom schemas, on the
other hand include schemas ]ike "For all numbers n and all sequences of numbers

kwuk ; j(kr~k7/Xﬁ ffmujgjjﬁguineg functors can be viewed as simple

operati/eny ON Sequences: "deletethe first coordinate, ''‘permute the

' and so forth. His axioms show how these

first two coordinates,'
operatian; are interrelated. If our axioms were expressed in terms of
the ¢isnp le. sequence-changing operations, they would be unintelligible.

For some time now I have been trying to derive my axioms from
a set of simple ones, like those Quine suggested I have come to the
conclusion that some axioms much more complicated than Quine's will
be indispensible. On the other hand, I am confident that an axio-
matization can be given in which each axiom is simple enough to be
intelligible without special defindouy or abbreviations. This paper
is written in order to report my progress on the problem and to
solicit help in finding a solution.

The remainder of the paper is organized as follows. Section Two
describes predicate functor logic and its interpretation and lists

s 0f peedicate {andor Jagc

the axioms of APL . I have used the versio?kwith the reflection

functor S and no identity predicate.



Section Three contains a sew definition of 1 which makes
it easier to establish the relation between <t and the primitive
functors Section Three also contains a new 1:)Y of axioms which do
not use the t-functors, and a {1t of theorems which can be proved
from the new axioms. These theorems facilitate the derivation in

Section Four of the APL axioms.

II. Predicate Functor Logic

The language of predicate functor logic contains symbols of two
varieties. First, for each n > 0 there is a countable collection of

n-ary atomic predicates. For convenience we take these to be just the

n-ary predicates of elementary logic. Second, there are the predicate
functors, -, f\,,F, P, [, ], and S.

For n 3 0 the set of n-ary predicates 1is the smallest set

satisfying the following conditions:
1) All n-ary atomic predicates are n-ary predicates.
2) 1If A" and B"  are n~-ary and m-ary predicates, respec-
, n m . .
tively, then (A (1B ) is a max(m,n)-ary predicate.
n . . n n

3) If B is an n-ary predicate them -B, and PB are
n—-ary predicates.

4y If B" is an n—-ary predicate then .an is an n-ary
predicate unless n < 2, in which case ,an is a 2-ary
predicate.

5y If 8" is an n-ary predicate then [Bn is an nt+l-ary

predicate.



6) If B" is an n-ary predicate, then [Bn and SB" are
&rﬂ—ary predicates unless n=0 in which case they are
O-ary predicates.
A predicate is a string of symbols which, for some n, can be shown
to be an n-ary predicate on the basis of 1-6. (We make the usual
assumptions that the initial collections of symbols are pairwise dis-
joint, and that juxtaposition in the metalanguage represents concaten-

ation in the object language.) LPF is the set of all predicates. A

sentence of LPF is a O-ary predicate. Henceforth we use A, B, C and

n _n _n . . . . .
A°, B, C, as metamathematical variables ranging over predicates in

LPF and n—-ary predicates in LPF’ respectively.

A model is a pair M = <D,I> where U 1is a non-empty set (the
domain of M) and I is a function from n-ary atomic predicates of

L,y to subsets of D". The members of D° are called arrays of
(0-\ h),
individuals ,or simply arrays. Suppose M = <P,I> is a model and

A

...> 1is an individual array on M. Then B 1is true of

a2 in M (written 'M & B' or simply 'a B B' when confusion is
unlikely) if one of the following holds:

1) B is an atomic n-ary predicate and <dl,...,dn> e I1(B).

-C and not a k C.
Loth

1l

2) B

3) B=Cﬂé7 and)a = C and a F A.

) B =pc" and <dy,didgndg > = c”.

5) B =PC" and <d_,dj,...nd gad s> B c".
6) B = SCT and <d,d;,d,,...,d > F c”.

7) B =[C and <d,,dg,...> F C.

8 B =]1C and <«d.,,d,,...> E C for some d, ¢ D.

0’1 0



P 1is true in M (written 'M kE P') if M é? P for all individual

arrays a on M. P is valid (' E P') if it is true in all models.

~

If T E-LPF then T 1is true of & in M ('M é% ')y if, for all

PET, M EP.
In APL the language was supplemented by a number of defined
functors including, for every pair (m,n) of natural numbers a

functor A4 n and, for every length-n sequence <kl,...,k > of

s n
natural numbers, a functor T<kl,...,kn> satisfying the following.
A-property

l¢gmgp, 1 <ngp= <al,.. ,a > kB 4 AP iff
b
<@ 8-1°%n0 %01 2> F A
T-property
. I .
P = max(kl,...,kn) = <al,...,ap> = T<§,...,kn> A iff
<ak ,ak s ,ak > EF A
1 2. n
—

The class of valid predicates was shown to axiom tized by the following

schemas and rules.

Pl. All "tautologous' predicates, i.e. all predicates that can be
obtained from tautologies of the propositional calculus by a
uniform substitution of predicates for sentence letters, - for

; ~ and OV for A.

% P2. T<l,...,n>An = A"
n n
\ P3. T<kl,...,kn>A = T<kl,...,kﬂ+p>A .
\ _
E P4, T<kl,...,kn>—A = T<kl,...,kn>A
5\
\X In addition the "boolean" functors and were added with appropriate

v definitions.



P5. r<kl,...,kn>(AfW B) = r<kl,...,kn>A,F\T<kl,...,kn>B
P6. 4 4 Az L A
m,n n,m m,n

il

P7. L L _A=4L L A
oo gm m,n p,n

P8. KL _A TKlA where k% results from replacing km in K

i

m,n
by k_.
n - ot
P9. r<kl,...,kn>PA = T<kn,kl,...,kn_l>A
n n
P10. T<kl,...,kn>pA = T<k2,kl,k3,...,kn>A
n-1 _ n-1
Pll. T<k1"“’kn>[A = r<k2,...,kn>A
P12, 1<k ...k >A™ o pak ...k >1AT
0 n 1 n

PR1) A FA> B => kB
PR2) FA = + QA where O= P,P,]s[,s
PR3) H(ATN T<k,,...,kn>3b) MO T<ko""’kn>]3b) - e

(provided ko > max(a,b,c,n,kl,...,kn).)

III. The New Axioms

Defined Functors

Superscripts on functors or bracketed groups of functors
indicate iteration. For example '(Pp)zA' means PpPpA and '[OA‘

means A.

1. A+B=-(AN-B)

2. A=B=(A->B)" (B + A

3. io = (P N=P) where P is the first O-ary atomic predicate in some enumeration
AL L

5. TS = -1k



7 /FkAn = Pl"k,pPk 1 (1 <k <n)
8 ’f’kAn = p B0 ™ (k2 n)

‘Pj'-l 'Pj—z ceeenn ’Pk A (1 < k<3
9. Pi A=\ PPy Peer A eI B

A (3=k)
10. Pa =P A
11. FElA,= Pl
Pl = (P )"
12. 4A = [SA
l—kipn~lA

13. L A=TP
m

Let M= (D,I) be a model and let [ = (d

Pab-1 -1 b,a (a < b)

P%b ib an (b < a)

A (a=b)

1’d2" .) be an array in M.

It is easy to verify that the Jefined terms have the following properties.

a)

b)

c)

d)

D satisfies pkA if the sequence obtained by

switching dk and dk+1 in p satisfies A.

D satisfies Pk mA if the sequence obtained
>

by removing dk from p and reinserting it
between dm—l and dm {so that it now occupies

the mth position) satisfies A.
D satisfies ikA if the result of changing
dk to dk+l in p satisfies A.

) satisfies ik mA if the result of changing
, T

dk to dm in [ satisfies A.



Notation
It will be useful to have some notation for sequences of natural
:“qce
numbers. Unless otherwise indicated lower case plainAletters willstand
for . natural numbers and bold face K and H willstand for sequences
of natural numbers. When sequences are arranged vertically a solid
line will indicate that the coordinates not displayed are the same

as the corresponding coordinates<5f the sequence immediately above.

Dots are used in the usual way. For example, instead of

A = <kl, ..,kj,...,kn,...,kp> and
B = <kyseeenky ok okegs ek 1ok Kk,
vie write A = <kl, ,kj,...,kn, ,kp>,
B = <k k k k >
1 n i P

The definition of 1 will require a few preliminaries.

Let K = (kl, .,kp) and let 1 g¢ic<p, lg<3jic<p, 1i#73.
If k., >k,,., i dis an inversion in K. If k, =k, then 1 is
i i+l e i 3
a twin of j in K and 1 dis a twin in K. If a g max(pl,kl,...,kp)

and a # km for 1 ¢m < p then a is an absentee of g. Note
that if K has a twin it must have an absentee.

We now define an ordering relation on sequences. Let
1 1

Lk K < Kl iff

1
= (k.,e..,K and = (k,,..
K= (kg o) K (k] 2

1) k has fewer absentees than Kl or
,
2) K and Kl have the same number of absentees but K~ has a

twin greater than any twin of K or



3) K and Kl have the same number of absentees and Kﬁ‘ has no

twin greater than all the twins of K and kl <
4) K and Kl have the same number of absentees and l{l

greater than all the twins of K and kl < kl.

K>H 1iff H<K.

For example

Let

= (kyyeoerk ).
K (1 p)

<2,4,1,6,8,8,4>
<2,4,5,4,7,7,1>
<2,4,5,4,8,3,1>
<2,4,5,6,8,3,1>
<2,4,5,6,3,8,1>

<2,3,4,5,6,8,1>

>

<1,2,3,4,5,6,8> >

<1,2,3,4,5,6,7,8>.

define a complex functor TK.

1

k

1
la

7

or

has no twin

Using the ordering relation just defined we

1. K= <1,...,p>. 7TK 1is the empty string of functors (i.e.,

TK A=A).

2. There are twins in K of which J

the greatest twin of

where

a

is the greatest, and m 1is

j din k. Then

is the smallest absentee of

K.
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3., There are no twins in K but there are absentee% of which a

l""’kp>[’

L. There are mo twins or absentees in [ but there are inversions

is the smallest. 7T<k_,...,k > = 1<a,k
1 p

of which j is the smallest. Then

T<kl, .,k}/Kﬂ..., kp> =
ek, —— k. .k, — k_> p,
/M i3 p Py

uhl‘iuC

It is easy to see that this definition assigns a‘lsfﬁw, ol faadory P Qiey Segucniw €
pamibt-s It 1is also easy to see that this definition satisfies the
T-property. It remains to check that we can prove P1-P1l from simple

axioms.
Axioms

Ax1. All tantologous functors

Ax2. -0OA = O-A O = p,p1[,S

ax3. QAN B) = (OAN OB) o= p,[.S,]
Ax3a. P@"N 3™ = pa" N ope"

Axb. prat = A"

Ax5. ,pP?pP_nAp = P%pP—%pAp (1 <n < p-1)
Ax6. p%fﬂzﬁmﬂmm

Ax7. ppA = A

Ax8.  SPPpaP = PRpTRSPA

Ax9. SPpA = RpSP‘%pPA

Ax10. SP lpa = pP'lsP,pP'lA

Ax11. SpA = SA

Plepl A

Ax13. [PA = Ppla

i

i

Ax12.  [pA



Axl4,

Ax15.

Ax16.

Ax17.

Ax18.

Ax19.

Ax20.

Ax21.

Ax22.

Ax23.

Ax24,

Ax25.

Ax26.

Ax27.

Ax28.

Ax29.

Ax30.

Ax31.

Ax32.

Ax33.

Ax34.

Ax35.

(Pl = pP A
(PP 1A = A

pA = 1iP LipPpipP pPlA

[Lm,nA = ’Lm-*'l,n-’r-l[A
[a = »(,l,m[A
p,A = pj+l{A

A= L A

AL A
m,n n,m m,n

i

L 4 A=z L 4
m,n a,m a,n m,n

1t
>
>

L 4 A=
m,a m,b m,b

Aa,b&c,dA z &c,déa,bA (where a # c,

pla = 4, . [A

2,1
plla = [[A
n>p= PUEAPEAP

/Lm,n]A § ]&m+l;n+lA

pj]A = MJjHA
[PA = PplA

Ipla = [1A

th
>

1A

a# d,

b # c)

11



R1. A => B where B 1is a tayqtologous consequence of A
R2. A = +— OA O= )3,Pa[yé>]

R3. m > n, g-PmAn = F -]-A

Theorems
_ 1 .1 ' 1 .
T1. F OA= OA= B =B where (O and (O are strings of

functors and Bl results from B by replacing one or more

occurances of O by Ol.

12,  PTPAP = P4
T3. {m—n} 3 2 = /pm/pnA E/pn/pmA

The APt = P tPifmt1®

A

i

T5. pm,pmA
T6. 1 <n <op-l = iP%a = (B P TP )P

T7.  iPph = PpP lpPiP pPa

i

8. P lpa = P lpmpp Lipprla
T9. ipA = LA

Tll., a) m<n

!
ot
~J

i. k <m-1l= P pAS:E
ii. k=m—l=>Pm/pA£;ok9P A
iii. m gk < n-1 = Pm,x{pkA = ,19k+lP

iv. k = n-1 = Pm ankA =P

vi. k>n=>Pm/pAE,{:Lp A



T11.

T10.

T12.

T13.

bB) n<m
i. k < n-1 => Pm’n,pk »:kam,nA
ii. k = n-1 = Pm,l{;okA = m,n-1
iii. k=n = Pm’t{fokA = Pm,n+lA
iv. n<kg<ml= Pm,:{pkA z /pk_le’nA
ve k=m = Po P AP 1 0
vi. k>m = Pm,nmkA E,kam’nA

/pmjpm,nA = Pnﬁ-l,nA

/F’m—-l/pm,n = pm—l,n

i. j < k-1= &J;pkA = ,pijA

ii. j = k-1 = z{:j/kaA E: ,pl(pjj,ng

iii. § =k = 4pAc= X:jA

iv. j = ktl = /Lj,pkA = ,pk,pjikij

V. j> kbl = Lp A= pki.A

a) m < n-1
i < m-1 => /(,m’nij z /pjim’nA
i =m1 => x,m’n,ij = pj/Lj,nA
j=m = &m,n/ij = pj/éj-kl,nA
m<j<nl-= x,m,n/ij = ’pjim,nA
j=mn-l = m,n'pj ‘mj’ém,n—-l
j=n = /ém,r‘fij /’Ojim,xﬂ'lA
ji>n = 'm,n/pj = ,inm,nA

A

13



T13. b)
c)
d)
T14. (PP D)

]

i

-1
T15. 4 P AP

T16. %
m

i

it

14



T17.

T18.

T19.

T20.

T21.

T22.

T23.

T24.

T25.

T26.

T27.

T28.

T29.

T30.

T31.

Ppm,nA = m~1,n~lA m,n > 1
PPl’nAp = Pp AP

PP, AP 2 1o’ A
PikAEik_lPA 1 <kg?

piaP = Pl P2
p-1

P&k,nA = &k—l,n—lA 1 < m,k

PL, lAP
k-1. _ . n-1
4 &k,nA = Ll,(n-k)+l
, _ 2k
4@%k,nA =P 'P’Ll,(n—k)+lP

N A L

L 4 A= 4L A
m,n m,n m,n

>
[%5)
o
i

m,n = &m+l,n+lA

Hi

ALy GA 4y 14,08

T G ek, ot

k>m, k>n= FPL AE=
k m,n

>

[PmA = Pn{p[A

pa” = P A
n

It

n _
k>n= A = Pk[A

1
[
i
=3
Hi

A

Lk_l’pA 1 <k

k-1

A

&m—l,n—lPkA

15
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Proofs of selected theorems

PopA - p(P=3)+L pi=1pl-k k1,

pl=d pi=k -1,

]

Pl—ijj—%pPk_denlA

il

pl=ip3 ”kak“jf;Pj 1A (by Ax5)

1

plok pk=1pl-3 pi-1,

i

]

il

LPpA = [SPpA

[PpSP LpPa (by Ax9)

il

i

PplpSP LpPa (by Ax13)

PP PSP LpPa

O]

%f%%f%%.

1t

Tlla

i) k < m-1

m,ﬁpk =
A R L
PP "'rpn—lA (by repeated application of T3) =

ﬁﬁmﬁ



P = PPty 0 Poo1Pi

A

m,n
2P P e Pt (by T3)
SO PP g pn__lA (by T5)
= PP £, _14 (by T4)
= pkmeE,n—lA
iii) m ¢ k ¢ n-1
/Pm,n”k = PP Pl
= pm e P e »pn__lA
=Pn o PPl PP 0 P
=P Prc1Prr PP P
= pk+l/’zfn,nA .
iv) k = n-1
Pm,dpkA =
43m73m1 oo fpn_ 1”31{ Az
DL 43n_2A (by T5) =
P A

m,n-1

n-1

17



vi)

T13a

i)

m,n k
PePmt1 Po-1n

Pm,n+lA

k > n. Similar to case i.

i < m-1.

*m,dij -

. i}
B oa-1tn-1'n,mAA

- .
fm,n-»l'{’n—lpjpn,mA
[ A

m,n—ij&n~an,m

fjpm,n~an—qumA

j = m-1
Lm,dpj -
P =

m,n—l&n-lpn,ﬁpm~lA

i

m,n—an-lpn,m~lA

*ﬁ—lpm-l,n—lin—lpn,m—lA

pjpm—l,nA

(by T11)

(by T12)

(by T11).

HH

i1



iv)

v)

vi)

j=m
&m,ﬁij -
P =

m,n-l&n—lpn,dpmA

Pm,n—l&n—lpn,m+lA

]

PPl n-1%0-1"n, mr1® =

Pyl

m< j < n-1l, Similar to case

j = n-1.
Lm,ﬁij -
pm,n—an~an,mpn—lA =

m,n-l&n—lpn~2pn,mA =

Pm,n-Ipn—an—an—an—lpn,mA -

Pm,n-Z"On--l&n—ZPn—l,mA -

pn—lpm,n—Z&n—ZPn—l,mA =
%ﬁpm,n-l

J=n

L P.A=

m,n J

P L P p A=

Pm,n~l&n-lpnpn—lpn+l,mA =

Pm,n~lpdpn—anpn-Ipn—lpn+l,mA =

i)

19



T16

vii)

i)

ii)

¥
&
H
o
>
i

i

Pm,n—Ipdpn—anPn+l,mA

Pnpm,n~lpn-linpn+l,mA

11

pnpm,n&npn+l,mA =

pjim,n+lA

Similar to case 1.

= 14 oty gty 104 A (by T22)

[a (by Ax17)

Hi

My 2% 3%3,1% 01

[A (by Ax23)

1t

14y 9% 3%y 131

[A (by Ax22)

i

149 9% ni1't3,1

20



T26

T29

1

149 9%5,1% 041

= 1y 043 0% neal

1084 (A

i

3,2%2,0+1

S<

i}

3,252,041

1t

2,171,

i

Ly 141,00

pkik,mik+l,nA -

k. k-1, . .
B e T T

1-k . k-1,
N C AT LA WS

1-k k

o -1,
PPl 1Y e+t e, el

1-k k-1

PP 14 e+, e+l A

1-k k-1

PP 19 (e, e T A

pl-k; i A
2, (n-k)+17°1, (m-k)+1

&k+l,n&k,mA
&k,mék+l,nA ’

P A

Z—nwpn~%p3~%ppn-3 o pn~Qan~n n

= P

(A (by

A (by

(A (by
4, 4y SlA (by

(by

Ax23)

Ax21)

Ax31)
T24)

Ax35)

(by T20)

(by T24)

(by T19)

(by Ax23)

(by Ax22)

(by T19)

A

Hi

1

HE

i

it

Hi

21



Pl—-n(Rmn—-lAn

it

pa”

T30
P LAY = PL((a" N TR-1y
= peat N T (by L2a)
- pra® N T (by Ax3)
= An N TR (by Ax32)
= A"

IV Derivation of the APL Axioms

. = I . =%k,,,. Then
Lemma 1. Let K <kl, kJ, kp> where kJ k3+1 hen
foLm’jA = TK/‘m,j%-lA'
Proof K L = TKl £ £ L £
) m,j j+l:j alsbl e an,bn m,j
where j+l < a, <a, < ... < a and b. < a.. By Ax22 and Ax19 this
1 2 n i i
is equivalent to TKlL £ A £ i.e., to
d 541,35 ta,,b, 77 Ta,b myitl T
K}’ 1’71 n’ n
TR A, 541
Temma 2. Let K = <K., «-.+) k., . k> and
— 1 ] P
1
K = <kl k +l’k3 kp>

Then TKij z TKIA.
Proof. Induction on K

Case 1. K= <l,...,p>. Then TKA = TKlA.



Case 2. K has twins, the greatest of which is n and the greatest

twin of n in K dis m.

a) 1 g3 ¢ ml. TKij =
T<k1, cens kj, kj+l’ ey km’ N kn, cens kp>ij z
~c<kl a p>/b1_l,m,p:1 =

(where a is the smallest absentee in K>

T<kl : kp>pj&n,mA

(by L13) =

T<kl ——~——-kj+l,kj, kp>&h,m

(by induction hypothesis) =
1
K A
(since the absentees of K and Kl are the same).
) m<j <n-1 or n<ig p. Similar to the previous case.

<

¢) j=m-1 and j 4is not a twin of n.

TKij =
T<kl, NN km—l’ km’ . kn’ . kp>ij =
<k, a p>in,mp3 =
T<kl kp ijn,m_l z
T<k ke km—l p>’n,m—l -

1



d)

e)

£)

24

j=m-1 and j is a twin of n
KA =
T<kl, cees km—Z’ km, km~1’ km+l’ cens kn, cees kp>A
= T<kl a kp>fbn ,mA
= 1<k, ki1, X koL A
s T<kl ’p>in,m~lij
= 1<k k >Ln’mpJA
(by Lemma 1)
= T<kl kn kpzij
j = m.
TKlA =
T<kl, s km—l’ km+l’ km, , kn, , kp>A
= T<kl a kp>&n,m+lA
- T<kl km’ km+l kp?plin,m+lA
z r<kl p>’n,m 5
= T<kl kn kp>FiA
=TM%A
i = n-1 and h-1 is not a twin in h'TK’{q =
T<kl, cees km, RN kn-Z’ kn, kn—l’ kn+l’ e kp>A
N T<kl a p>ino1,m

1t
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= 1< i
T Ln,mﬁHA

= 1< kn ijA

= THY; A

j=n1l, m<n-l and n-1 is a twin in K. Let q be
the largest twin of n-1 in K. (Since m is the largest

twin of n, kq # km and q # m.)

TKjA =
T<kl,...,kq,...,kn_z,kn_l,a,kn+l,. ,kp> n,ﬁpj =
T<kl kp>p'in~l,mA =
Ty ko TR G
T<kl a,b kp>in,qinwl,mA

(where b 1is the smallest absentee in the previous squence) =

T<kl » kp>&n—l,m&n,qA =
T<kl kprn—l&n—l,an,q
(by L25) =
T<kl b,a kp>Ln-l,n’n,q
(by induction hypothesis) =

<k k ,a ————k >{ A=

1 s} P 0,9
T<kl kn’kn—l ““~—‘kp>A =

1

K A



Case 3.

h) j=n-1l=m
TKplA =
T<kl, R kn—l’ kn, N kpzij =
T<kl a p> n,n—fpn—l =
T<kl p>&n,n—l N
T<k1 kn—l — kp>A =
TKlA
i) j = n. TKij =
T<kl’ s km, S kn: ..y kp>ij =
T<kls ’ kms s 8, H p>'én,m/pn =
T<kl kpzann+l,m z
1<kl kn_l,a o kp>&n+l,mA =
<k k k >A
1 n P
= TklA
There are no twins in K but there are absentees, of which

a is
T<kl,

T<a,

i

T<a

T<a

Ht

the smallest.

kl’

» k

, k

<k

.., K >p A=
p pJ
— k >[p.A
P J
1 T kP (A
1 ———-kj+l, kj —--kp>[A
1T kj+1’ kj ———AkP>A

26



Case 4.

K has no twins or absentees but it does have inversions, of

which m 1is the smallest.
a) m< j-1
TKij =
T<kl, km, s kJ, e kpzij
= T<kl’ ———_.km+l’ km kprﬁij
= 'r<kl kpwjpmA
z T<kl kj—l kj _— kp}pmA
= 1<kl km, km+l kp>A
= TKlA
b) m = j-1, < k,__1 and k,+ < k,
TKpj =
T<k1, kj—z kj—l 5 410 kpzij
= -c<kl k., kj—-l kp>pm49jA
= r<kl s kj+1’ kj_l, kpwjzpmij
z T<k1 kpzpﬁpjpmA
= 1<k, kj+1, 5 kj__l kp>,pjpmA
= T<kl kj~1’ kJ kpzpmA
z 1<k kj-l’ kj+1’ kj kp>A

27



¢) m=3j-1 and k, < kj~l < kj+l'
1
K A=
T<kl, s Ky g kj+l’ kj’ ooy k A
= 'r<kl s kj, kj+l’ ——-kpzij
= 1kp. A
LK{"J
d) m=j
TKP.A =
KPJ
T<kl, cees km, s kp>,pmA =
<k km+l’km’ _.kpzpmpmA
= 1<k, k >A
< P
1
= 1K A
e) m> j. Since m is the smallest inversion, kj < kj+l'
TKlA =
T<kly s j"’l’ kj+l, J, kj+2, v ey k_p>A
= 1<k, , k., k., k >p. A
1 AR p ¥
= TKO.A
Kp]
1
Lemma 3. Let K = <kl,...,kp>, l<mgp, 1 <ng<p and let K
be the result of replacing km in Kl by k {(leaving all other
coordinates unchanged). Then TKim oA E TKIA.

Proof. (Induction on K.)

28



Case 1.

Case 2.

k =

K contains twins, the largest of which is

<l,...,p>. Then TKlA = TKLm nA.

3

and the largest

twin ¢f i in K dis h.
a) m=3j. Then n < h.

TK m,n -

T<k-1, Py kn, . v kh, c ey kj, ooy kp>/(,m’nA
= T<kl a kp>'('m’h'(’m,n
= 1<k k. k >A v

1 3 p
1
= 1K A
b) n=3, m=h

TK/Lm’n =

T<kl, . kh’ e - kp>&m,hA
= 1<k >4 4

1 p n,m m,n
= 1<k k >{ A
1 n,m
= 1<k k, k >A
1 p
= TKlA
¢c) n=3, m<h. (Then k = k= Iy )
TK&m’n =
T<k k k. k >{ A
1 m ] p m,n
= 1<k a k >4 4 A
1 p nh m,n

29



= T<k1 a kp>Lmh&jhA
= T<kl kh kh a kp>LjhA
= ~c<kl kh kp>A
= TKlA
< . , - - .
h<n<g3ji or h<m<]j. km kn, kh kl and h 1is

the greatest twin of j, so km # kh and hence m # h,

n#h, m#3i, n#j.
TKJ(mnA =
T<kl, N kj—l’ a, kj+l’ cees §,b5m,n z
Tk kp m,nLjhA =
1 1 1 1.
r<kl, s kj—l’ a, kj+l’ s kp>&j A
1
K A
m=h, k #Kk Then Kl < K. T,:ET 1& . by induction
n K K m]

hypothesis. So

K &mn - TK’l&mj&-mn A
_ 1,
= tk »(,mn A
z TKUA.

m=nh, k =k.

n m
TK&mnA =
1 ; -
T<&l, , kn’ s km, , kj, R kp>&mnA
<k, , a >(. A =
1 p j,m mn

30



1<k a k >4 4, L
1 p n,m jmmn
because k_ =k and <k, — a-—5k > < K
n m ) 1 P
= 1<k k >{, L A A
1 P jm mmmn
= 1<k k >4, 4 A
1 p jmom
= 1<k k >4 A4, A
L P ogmp
= 1<k k >, A
1 » p Jm
1

TKﬁﬁnA =
T<kl, “es km’ ey kn’ vas kj, s kp>imnA =
<k a >4 =
1 j,n m,n
T<kl m,n&j,n -
1<k k >, A=
1 n jn
<k k, k >A =
1 J P
TKlA

h. m,n < h. Since j 1is the largest twin h < j. Hence

m#h, n#h, m#3j, n# j. So subcase b applies.
Case 3. K has no twins but it does have inversions, the largest of
which is 3. There are 14 subcases.

A. m<n

i) k#m-1l, k#m k#n-1, k#n
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m and k < n-1

[

iii) k
iv) k=m=n-1
v) m < k = n~1
vi) k=n, m=n-1

vii) k=n, m < n-1

i) k#n-1, k#n, k#mnl, k#n
ii) k= n-1

iii) k=n and n < m-1

iv) k=n=m1

V) k=m-1 and n < m-1

vi) k=m and n < m-1

vii) k=m n = m-1

The proofs of these cases are all similar. We do A.iii and A.iv as

examples.
A.iii) ﬂ(ém,nA =
T<kl, s km’ s kn~l’ kn’ .. k >Lm’nA
= T<kl, —— km_l, km kp>pmim,nA
= <k kpm’ml’n,pmA
= "c<kl kn gp>pmA (since km+1 < km)
= T<kl kn, krle kp>A
1(



A.iv)

Case 4.

m,n
= r<kys cees Ko gs ks Ks ey k24 A
= tkys eees Ky R g k>0 1%0-1,0"
= T<kl kp>’Ln,n-1A
z 1<k k, k k >A
1 n n P
= TKlA

K has no twins or inversions but it does have absentees, the

least of which is a.

a.

Hi

H1

1t

il

km # mln(kl,...,kp)

T<kl, ey kp>im’nA =

T<a, kl, cens kp>[4m’nA =

veas Ky T k> i A

t<a, k; k k kp>[A
T<kl >
= T lA

k min(kl,.. ,kp) Since there are no inversions,
Tk{m,nA =

T<kl, s kn’ R kp>£l’nA

T<a, kl kp>{il, A

T<a, kp>£l’2[ l,nA
T<klik1 k >[{1, A

m

it

[

33



= Tk Ky kp>4o prplh
= 1<k, a kp>L2,l&2,n+l[A
= < R
- T<kl)kn kP>[A
= 1<k k >A
n P
Lemma 4. K = <kl,.. ,kp>
1
K = <k2,...,kp>
Y
TK{A = TK A.
Proof. 1Induction on K.
1. g =<1,...,p>.
TK[A =
1<l,...,p>[A =
T<2,...,P>A .
2. K has twins, the largest of which is n and the largest twin of
n in K is M
a m > 1
K[A =
T<kl,- ,km, ,k ,...,kp>[A =
T<kl k >¢n,m{A =
T<kl Kp>un-l,m-—lA
T<ky K1 pe1® F

34
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b. m = 1. Then kl is the only twin of kn in K.
T<kl, .y kn’ ey kp>{A =
T<kl, a kp”‘n,l[A =
1:<kl kp>,p4n’2p[A =
T<ky kPl ot 1 1A =
r<k2 k2 —_— kl —_— kp>[A =
T<k2 kp>A by induction hypothesis
(Since there is no twin in <k2}<2 ~---—~k.l -—-kp> as large as’ sl )~

K has no twins but it does have inversions, of which the smallest

b. j =1
<k, ,
1

T<k2,

and there is
., k >[A =
P

., k >A .
P

w
rUV
X5
[
Laen §
>
[H]

ot
o
v
S
[N
I
b
=3
H

. 1 . .
no absentee in which is less

than

kl'



C.

L. K n

smal
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j =1 and there is such an absentee.

T<kl, k2’ ey kp>[A =

t<k,, k; ——— kp>p[A =

22 71

<k, kl —_— kp>42,l[A

it

T<k2,k kp>[A =

2

i

T<k2,a e kp>¢2’l[A

T<a,k

9 kp>{A =

T<k2 R kp>A .

as no twins or inversions, but it does have absentees, the

lest of which is a.

TK[A =

'*:<kl

T<a,
T<kl
T<kl

T <

s ey kn>[A =

k ~‘kn>{[A =

l’

i

a kn> [[Aa

a kn>[{A z

q— k >[a =
<k;~*— k_>A .

.,k >A

n _
p > n. Then 1<k ,...,kp>A z 1<k -1

l,..

w
A\
h
1

., k >P [A" (by T29
. .p[ (by )



n _
D 10 e kp—l>[A =

<k
n n
Corollary. p > n = T<kl,...,kp>A = T<kli‘"l kn>A .

Lemma 6. k > k_,...,k

1 p-1
K= <kyennsk k> K5 = <kiyeea,k >
l, 3 P“’l, l’ 3 p_l
_ -1
Then TKA = PkP > TK}A .
Proof. Since (‘> k k the twins and inversions of K are

100k

the same as those of Kl. The lemma is proved by induction on K
Lemma 7. Let K = <k

]P;lTKPpA = KA .

Proof.
~1 _
1. ]P T<1,...,p~l>P A =
p P
-1 ~ _
Pp PA = JA = t<l,...,p-1>1A .

2. K has twins, the largest of which is n and the largest twin of

n 1is m.
]P’lr<k e,k , vi., k. >P A=
p l, » n) 3 p__l p
]P“l <k k .>i _PA=
P R @ p-1 &m,n p
-1
1P Tt<k P (by T26) =

p %1 NS R e

37
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T<ky ko1 Mgy i
(by induction hypothesis) =
r<kl kp_lum,n]A .

3. K has no twins, but it has inversions, the largest of which is j.

This case is straightforward.

4. K has no twins or inversions but it has absentees, the least of

which is a.

-1
P "1t<k,, «o., k. .>P A=
] P 1 p-1 p
1P Ye<a, k., ..., kK .>[PA =
P 1 p-1 "'p
1P tca — k. >PplA (by 127) =
p p-1 p
T<a kp~1>] [A =
TG~ kp_1>[]A (by Ax24) =
<1 -——-——-—-—kp__l>]A )

Lemma 8. Pl-P12 are derivable from Ax1-Ax28 and R1-R3.

Proof. Pl is Axl. P2 is teae by definition. P3 follows from Lemma 5.
P4 and P5 follow from Ax2 and Ax3 and yie definition of <t. P6 and P7
are Ax20 and Ax21. P8 is Lemma 3; P9 follows from Lemma 2 and T28.
P10 follows from Lemma 2. P11l is Lemma 4 and P12 follows from Ax32

and Lemma 4.

Lemma 9. PR3 is derivable.



Proof. Suppose f (AT N T<ko, e ,kn>Bn) + cP  where

ko >m+n+p +kl+ ees kn. Then (o An -C —>—T<k0,...,kn>B.

n - -
By Lemma 2 + A C— T<kl,...,kn,kO>Pn+lB .

By Lemma 6 + A N ~C - —PkOP;il«kl,. .ok >P B

By Ax2 FAN-C > Pko - P;ilr<kl,...kn>Pn+lB .

By T29 - Pko{(A N-c) » Pko - P;ilT<kl,...,kn>Pn+ls
By Ax3 - PkO(A N -c) - P;il«kl,,..,knwml}s .

By R3 and Ax3 | -]-[(A N =C) » —jP;ilT<kl,. ‘e ’kn>Pn+iB .
By T30 and Lemma 7 (A N-C) - —T<kl,...,kn>]B .

By R1 f—AﬂT<kl,...,kn>]B~>C .

Since PR1 and PR2 follow from Rl and R2 we have now shown that the axiom

system presented here is equivalent to the one presented in APL.
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