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     1 I have benefited from comments of Lloyd Humberstone.  

Minimal Non-Contingency Logic1

Modal logic is supposed to be the study of principles of reasoning involving necessity,

possibility, impossibility, contingency, non-contingency and related notions.  It has become

customary to construct systems in which necessity alone, or necessity and possibility, are treated as

primitive connectives. In most such systems the modal concepts mentioned are all interdefinable,

so that these systems can be regarded as systematizing, at least indirectly, reasoning involving all of

them.  Nevertheless, systems in which contingency or non-contingency are treated as primitive

connectives have certain technical and philosophical interest.  (See [5]). Such systems have been

investigated in [5], [6], [7] and [4].  (See also [1] for a discussion of Aristotle's logic of contingency.

)  The investigations were facilitated by the observation that necessity is definable in the systems

considered.  (For example, in extensions of the system T, necessarily A is equivalent to A and not

contingently A.   [2] provides examples of systems not containing T in which necessity is otherwise

definable.)  In the contingency version of the "minimal" modal system K, however, necessity is not

definable, and so a general account of  the logic of contingency has not emerged so quickly. [3]

solves this problem by showing how to modify standard completeness arguments for necessity

systems to a system in which non-contingency is primitive.  The axiomatization in section three of

[3], however, contains a somewhat unwieldy rule schema, and the author asks whether a finite

axiomatization is possible.   This note answers that question affirmatively by presenting a

considerably simpler completeness proof that does not require the unwieldy schema.  It also solves

another problem raised in [3], axiomatizing the non-contingency version of K4.

Our base language is that of classical propositional logic with w and ¬ as primitive

connectives.  We add two "modal" connectives,  ) and «, for contingency and non-contingency,

respectively.  To facilitate comparison with [3], we take non-contingency as primitive and define

contingency by the condition:  «A= ¬)A.  A Kripke model is a structure (W,R,V), where W is a non-

empty set (the "worlds"), R is a binary relation ("accessibility") on W, and V is a function from

sentence letters to sets of worlds.  The notion A is true in M at w (written (M,w)ÖA) is defined in

the standard way.  The clause for ) is as follows:

(M,w)Ö)B if and only if either, for all v0W such that wRv, (M,v)ÖB, or, for all w0W such

that wRv, not (M,v)ÖB;

As usual, A is false at in M at w (written (M,w)Ö/ A) iff it is not true in M at w. A formula that

is true at every world in a model M is said to be true in M. If  it is true in all the members of some



class C of models, it is said to be valid in C.   If it is valid in all Kripke models, it is said to be valid.

Minimal non-contingency logic is the set of all formulas valid according to this definition.  

Now let K) be the set of all formulas provable in the following axiom system:

PL) All substitution instances of tautologies

A1))¬A6)A

A2) )Av«(AvB)6«B

A3) )Av«(AwB) 6 )(¬AwC)

R)) If |A then |)A

RE)   If |A:B then |)A:)B

MP) If |A and |A6B then |B.

Note that all these schemas except PL are finite, and PL can be replaced by any finite set of axiom

schemas that generate the tautologies using MP.

In the remainder of this paper we assume some familiarity with [3].  We establish first that

K) is contained in the system NC of [3].  Indeed every theorem of K) can be proved using only PL,

MP, )¬, and (NCR)i for i=0,1,2.  The rule R) is just (NCR)0  and the rule RE is derived (under the

label Rcong) in section two of [3].  Similarly, axiom schema A1 is just )¬ and  A2 (in the presence

of PL and MP) is interderivable with the schema )Av)B6)(AvB).  This is an instance of the

principle 2.2 that, by an argument in section three of [3] is provable from (NCR)2..  It remains only

to prove A3. By PL |A6(AwB) and |¬A6(¬AwC), and.so by (NCR)1,  |)A6()(AwB)w)(¬AwC)).

By PL and MP, |)Av«(AwB) 6 )(¬AwC) i.e.,  A3 is provable.

The principal result of this note can be expressed as follows:

Theorem (completeness of K)).  K) = minimal non-contingency logic.

The soundness (i.e., the "f") half of the theorem is follows from the observation above that

K) is contained in NC and the proof in [3] of the soundness of NC.  To prove the sufficiency (i.e.,

the "g")  half of the theorem,  we show that every non-theorem is false in some model.  In fact, as

is often the case, we can show that there is a single "canonical" model which falsifies all the non-

theorems (and which satisfies all consistent sets).  Our construction of the canonical model uses an

auxiliary function, 8 (playing the same role as its namesake, constructed in section three of [3].) 

If x is a maximal consistent set of formulas, then 8(x)={A: for every formula B, )(AwB)0x }. 

If x is maximal consistent, then the following properties are satisfied.



P1.  8(x) is non-empty.

Proof. Take a tautology A, then for any formula B, |AwB.  By R), |)(AwB). Since x is maximal

consistent, )(AwB)0x. Hence A08(x).

P2. If A08(x) and |A6B then B08(x).

Proof.  Take an arbitrary formula C.  We must show )(BwC)0x. Since A08(x), )(Aw(BwC))0x.

Since |A6B, |(Aw(BwC)):(BwC), and so, by RE, )(BwC)0x, as was to be proved.

P3. If )A0x and Aó8(x) then ¬A08(x).  

Proof.   Suppose  )A0x and Aó8(x) but ¬Aó8(x).  Then there is some formula B such that

)(¬AwB)óx. Since Aó8(x), there is also a C such that )(AwC)óx.  By definition of « and maximal

consistency of x, «(AwC)0x.  Since )A0x, this implies )Av«(AwC)0x.  By A3, )(¬AwB)0x. This

contradicts the earlier conclusion, and so the supposition is false and the claim is true.

P4. If A08(x) and B08(x) then (AvB)08(x).

Proof.  Suppose A08(x) and B08(x), but  (AvB)ó8(x). Then there is some formula C such that

)((AvB)wC)óx.   By definition of «, «((AvB)wC)0x.  By RE, «((AwC)v(BwC))0x.  Since A08(x),

)(AwC)0x.  Since x is maximal consistent, )(AwC)v«((AwC)v(BwC))0x.  By A2, «(BwC)0x, and

so )(BwC)óx.  But this contradicts the assumption that B08(x),  so the supposition is false and the

claim is true.

Let W be the set of all maximal consistent sets of formulas.  For all u,v0W, Let uRv iff 8(u)fv and,

for all sentence letters q let V(q)={w0W:q0w}.  The canonical model is the model M=(W,R,V).

Lemma.  If M=(W,R,V) and w0W, then (M,w)ÖA iff A0w.

Proof.  By induction on A.  We do the case A=)B.  First, suppose A0w.  By P3, either B or ¬B is

in 8(w).  By the definition of R, then, either �v(wRvYB0v) or �v(wRvYBóv).  By induction

hypothesis, either �v(wRvY(M,v)ÖB) or �v(wRvY(M,v)Ö/ B).  By the truth definition, (M,w)ÖA,

as required.  Conversely, suppose Aów.  Let x1=8(w)c{B} and let x2=8(w)c{¬B}.  Both of these

are consistent.  For, if x1 were not, we would have |C1v...vCn6¬B, for  where C1,...,Cn  0 8(w). (By

P1, we may assume without loss of generality that n$1),   By n-1 applications of P4,

(C1v...vCn)08(w), and therefore by P2, ¬B08(w).  This implies )¬B0w, which, by A1, implies

)B0w, contradicting the supposition that Aów. The argument for x2 is similar.  Thus W contains

maximal consistent sets u and v containing x1 and x2, respectively. By definition of R, wRu and wRv.

By induction hypothesis, (M,u)ÖB and (M,v)Ö/ B.  By truth definition (M,w)Ö/ )B, as required.

To prove the theorem it is sufficient to observe that, if A is a non-theorem, then ¬A is



consistent, and so {¬A} can be expanded to a maximal consistent set w.  By the lemma above

(M,w)Ö¬A, and so M falsifies A, as required.

More generally, the argument here establishes that every extension of K) is complete with

respect to some class of (non-contingency) Kripke models. It can also be adapted to provide special

completeness results for particular non-contingency logics. Consider, for example the question raised

in section four of [3] of axiomatizing the logic determined by the class  of transitive models.  Let

K4) be the formulas provable in the axiom system obtained by adding the schema )A6)()AwB)

to the system for K) and let transitive non-contingency logic be the formulas valid in all transitive

models.  Then we can show:

Theorem (completeness of K4)).  K4)=transitive non-contingency logic.

To prove soundness it is sufficient to show that the new schema valid in the transitive

models.  Suppose there is a transitive model M=(W,R,V) and a world w0W such that

(M,w)Ö/ )A6)()AwB). Then (M,w)Ö)A but (M,w)Ö/ )()AwB).  The former condition implies that

A is either true at all worlds accessible from w or false at all such worlds. The latter condition

implies that for some v such that wRv, (M,v)Ö/ )AwB, which implies that (M,v)Ö/ )A. Thus there is

a world u1 accessible from v at which A is true and a world u2  accessible from v at which A is false.

Since M is transitive, however, u1 and u2 are both accessible from w, contradicting our earlier

conclusion. Since M and w are arbitrary the new axiom is valid.

To prove sufficiency, we may show that the canonical model (defined as above) is transitive.

Suppose u and v are worlds in the canonical model such that uRv and vRw and suppose that, for

every formula B,  )(AwB)0u.  Then by the new schema we have that, for every formulas B and C,

)()(AwB)wC)0u.  Since uRv, )(AwB)0v for every formula B.  Since vRw, A0w.   Thus, we have

shown that )(AwB)0u for all formulas B implies A0w, which is exactly the condition required for

uRw.
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