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INTRODUCTION

This thesis is divided into two parts. Part I is intended to 

provide the background in modal logic needed for Part II. It con

tains a uniform treatment of modal logics (including classical logic 

as a special case). Consequence relations are emphasized, rather 

than the logics themselves, making it possible to dispense with many 

of the usual presuppositions about the formal language. The reader 

who already knows some modal logic may prefer to begin with Part II, 

and refer to Part I only as needed.

Part II deals with modal systems which are 'propositionally 

many-sorted'. The motivation for the study of these systems comes 

from tense logic. It has often been pointed out that the traditional 

tense logics do not provide a satisfactory analysis of English tenses. 

For example, they provide no means of distinguishing between sentences 

like 'John builds a house', which admit a progressive tense, and those 

like 'Two is a prime number', which don't. It seems reasonable to 

say that sentences of the first kind should be evaluated at intervals 

of time, those of the second, at instants.'1' The progressive tense 

of a sentence A is true at an instant if A is true at some

'*'As it turns out, this is a little too simple-minded. In the 
system of Chapter 3, sentences of the first kind are evaluated at_ 
instants (of utterrance) with reference to intervals (of occurrence). 
Sentences of the second kind are evaluated at instants with reference 
to instants.
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interval containing that instant. If A is 'instant-evaluated', 

the progressive tense of A is ungrammatical. This explains why 

'Two is a prime number' has no progressive tense and also why the 

operation of forming the progressive tense cannot be iterated.

Systems like these in which different kinds of sentences are evalu

ated at different kinds of 'worlds' are exactly what we mean by 

'propositionally many-sorted' systems. Such systems may have other 

applications as well (particularly in areas where the interpretation 

of iterated connectives has proved difficult).

In the first of the three chapters of Part II, a general theory 

of many-sorted systems is outlined. Their application to tenses is 

presented in the next chapter.

The final chapter deals with the interpretation of quantifiers 

in classical logic. Similarities between quantifiers and modal 

connectives have been noted many times. In this chapter we show 

that the work of quantifiers can, in fact, be done by propositional 

connectives within our many-sorted framework. What would normally 

be expressed by a formula of predicate calculus with n free 

variables can be expressed by a modal sentence evaluated at 'worlds' 

which are n-tuples of individuals. It turns out to be more convenient 

to base our systems on the variable-free equivalents of predicate 

logic than on predicate logic itself. We consider systems based on 

two such predicate logic-equivalents: Tarski's cylindric algebra 

and Quine's predicate functor logic. A third system is also intro

duced in order to bring out the resemblance between these systems 

and Segerberg's 'basic' two-dimensional modal logic, B. Each of
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Che three systems is shown to be equivalent (in a sense defined in 

Part I) to predicate logic. This adds weight to Von Wright's view 

that quantification can be regarded as a modality. In the case of 

predicate functor logic, the modal approach has another virtue. It 

leads to the solution of a problem of Quine's, viz., axiomatizing 

predicate functor logic in such a way that its theorems correspond 

exactly to those of classical predicate logic.
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CHAPTER I

LOGICAL FRAMEWORKS

A. Introduction

A logical framework consists of a language, a class of structures 

for the language and, for each structure, a class of possible inter

pretations of the language in the structure■ The language can be 

thought of as an idealization of some part of a natural language.

It is determined by a set of symbols and a set of rules by which the 

symbols can be concatenated to form sentences. The set of rules 

is such that it is always possible to determine in a finite number 

of steps whether or not a given string of symbols is a sentence. A 

structure for a language can be thought of as a (possibly unfaithful) 

representation of certain features of the world. An interpretation 

is a link between language and structure which makes it possible 

for sentences of the language to express information about the world. 

We can think of an interpretation as a procedure which enables us to 

determine whether sentences in the language are true or false "in the 

structure", ie. whether the sentences would be true or false if the 

world were as represented in the structure. To specify an inter

pretation usually requires two steps. First, we associate with 

each symbol of the language an object contained in the structure.

The formal device which spells out this association is called a 

model. Then we outline a uniform procedure by which the truth of

-4-
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a sentence in a structure can be computed from the objects which 

are associated with its constituent symbols. Once this procedure is 

given all the information needed to determine the truth-in-s of 

sentences under i is provided by the model corresponding to i. 

Hence we usually talk about 'truth in a model' rather than truth 

in a structure under an interpretation.

From the preceding description it is apparent that a great 

deal of latitude is permitted in the choice of a logical framework. 

First, nothing was said about which part of language or which 

features of the world are to be captured. Furthermore, no guides 

were given for determining the class of structures. We can consider 

only structures which represent conditions similar to those which 

obtain in the real world, or we can allow structures•which represent 

conditions so bizarre as to be unimaginable. Similarly, there were 

no restrictions placed on the set of interpretations. A symbol might 

have a wide range of possible values under different interpretation 

functions, or it might be assigned the same object by every possible 

interpretation. Finally, the manner in which truth values are com

puted from the interpretation functions is left completely open.

Despite their apparent diversity, the logical frameworks share 

an important property. Every logical framework determines a relation 

between sentences that corresponds to a notion of logical consequence 

and a set of sentences which corresponds to a notion of logical 

truth. A sentence A is a logical consequnce of a set of sentences 

F (with respect to a logical framework) if, in every structure, B 

is true under all interpretations under which all the members of F
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are true (or equivalently, if, whenever every member of T is true 

in a model, so is B). A sentence is logically true or valid (with 

respect to a logical framework) if, in every structure, it is true 

under all interpretations (or equivalently, if it is true in all 

models).1 Thus, if the aim of logic is to find criteria by which 

sentences can be classified as logically ture or not logically true, 

and by which sentences can be classified as logical consequences of 

sets of sentences or not, then this aim can be met by specifying 

a logical framework.

The criteria provided, however, may not be as useful as we would 

like. Since 'consequence' and 'validity' are defined in terms of 

all structures and interpretations or all models it may be impossible 

to determine in a finite number of steps whether a given sentence is 

valid or whether one sentence is a consequence of another. In fact, 

to check that a valid sentence is true in all models and to find a 

model which falsifies a non-valid sentence may both be tasks requiring 

unlimited time. For this reason we rely on the axiomatic method. 

Certain valid sentences are singled out as axioms. Then rules are 

given which enable us to generate other valid sentences from the 

axioms. We require that both the rules and axioms can be enumerated

1It might seem odd to define 'consequence' and 'validity' relative 
to a framework and to talk of a. noticn of logical consequence instead 
of the notion of logical consequence. But a good case can be made 
for the thesis that there is no one notion of logical consequence, 
and that an explanation for some of the differences between the logics 
of, say, Leibnitz and Frege is that there are different logical frame
works underlying them. But these matters will not be discussed here.
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in some effective way. Any sentence which can be obtained from the 

axioms by applying the rules a finite number of times is called a 

theorem. If a sentence is a theorem, there is an effective pro

cedure for verifying this fact. First we list all the theorems that 

can be generated from axiom 1 by 1 or fewer applications of rule 1, 

then all the theorems that can be generated from axioms 1 and 2 by 

2 or fewer applications of rules 1 and 2, and so on. It is clear 

that at each stage, we add only a finite number of theorems to the 

list. So we can check, at each stage, whether the theorem to be 

tested has appeared on the list. Since every theorem is generated 

from a finite number of axioms by a finite number of rules, we must 

eventually find our test theorem on the list.

This method enables us to recognize some logical truths, but, 

unless every logical truth is a theorem, it will not provide the 

kind of general verification procedure we wanted. Thus we are 

interested in finding axioms and rules which will make every' logical 

truth a theorem. Similarly, we are interested in finding a way of 

generating all the pairs (T,B) such that B is a consequence of 

F from some finite set of these pairs. These tasks we call the 

tasks of axiomatizing a logic and axiomatizing a consequence relation, 

respectively.

Sometimes, we reverse this procedure. We start with the 

assumption that certain sentences are valid and that certain rules 

always generate valid sentences from other valid sentences (or that 

certain sentences are consequences of certain others and certain 

rules always generate consequence-related pairs from other consequence-
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related pairs). We then investigate classes of models which are 

compatible with these assumptions.

We have now talked in a very general way about logical frame

works, languages and models. In the remainder of this chapter we 

shall make these matters more precise for a number of special and 

well-known cases. We shall be concerned in particular with the 

problem of axiomatizing logics and consequence relations. We shall 

also investigate the relation between logical consequence and 

logical truth and the problem of determining when two consequence 

relations or logics are equivalent. Much of the material in this 

chapter will be used (or at least imitated) in the next chapter when 

a wider class of logical frameworks is introduced.

B. Languages

Definition 1.1a. A propositional language is a pair (S,C) where 

S is a set (the set of sentence letters) and C is a collection of 

pairwise disjoint (possibly empty) sets Cn for n a non-negative 

integer. The members of are called n-ary connectives, and

0-ary connectives are also called sentence constants. No sentence 

letter is identical to any n-ary connective.

Definition 1.2a. If L = (S,C) is a propositional language, the 

set of sentences of .L is the smallest set X containing S U 

as a subset and closed under the rule:

(Rl) If A,,...,A are in X and □ is in C then I n  n
the sequence (□, A^,...,A^) is in X.
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Definition 1.1b. A predicate language is a triple (X,P,C) where 

X is a countable set (the set of individual variables), P is a 

collection of countable sets Pn for each non-negative integer n, C 

is as in Definition 1.1a except that, for each x in X, must

contain the special connectives Vx and 3x. These are called quantifiers. 

The members of PU are called n-ary predicate letters. The 0-ary 

predicate letters are also called sentence letters. (If (X,P,C) 

is a predicate language then (P^,C) is a propositional language 

with sentence letters in P^.) The individual variables, predicate 

and sentence letters, and connectives are all distinct.

Definition 1.2b. If L = (X,P,C) is a predicate language, then

the atomic sentences of L are all finite sequences of the form ((/*)

or (Qn, x^,...,x^) where cP is in P^, Qn is in Pn, and

x,,...,x are in X. The sentences of L are the members of the 1 n  —
smallest set which contains all the atomic sentences and is closed 

under (Rl) above.

We represent sentences and atomic sentences by writing the 

names of their coordinates in order from left to right (with no 

commas or parentheses). We do not lose anything by this convention 

since none of the symbols we use to denote objects in the language 

can be got by writing two or more other such symbols side by side.

An occurrence of a variable x in a sentence A is said to be 

bound if that occurrence is part of an occurrence of a sentence of 

the form Vx B or 3x B in A. Otherwise that occurrence is 

said to be free. We sometimes write 'A(x^,...,x^)1 instead of 'A'
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to indicate that xq’---’xn mi§ht have free occurrences in A.

If we do this and later in the same discussion we introduce the

notation 'A(y15...,y )’, then 'A(y. ,. . . ,y) ' is understood to I n  i n
be the result of simultaneously substituting y^ for each free 

occurrence of . We frequently identify a predicate or proposi

tional language with the set of its sentences. By the constituents 

of L, we mean the connectives, sentence letters, etc., which are 

the coordinates of sentences of L.

Definition 1.3. If A is a sentence of a propositional or pre

dicate language then the length o_f A is the number of occurrences 

of connectives in A.

Definition 1.4. A propositional or predicate language is Boolean 

if it contains ' - 1 as a unary connective and '■*■', ' A ' , ' V '

as binary connectives, , '■*■' , 1 A ', and ' v ' are called

Boolean connectives. We deviate from the conventions stated earlier 

by writing:

(A A B) , (A V B) and (A B)

instead of

'A'AB, 'V'AB, and '+'AB, 

respectively. Outermost parentheses in the representations of a 

sentence containing occurrences of Boolean connectives are normally 

omitted. Non-Boolean connectives which are not quantifiers are 

called modal connectives.

The word 'language' will be understood to mean predicate or 

propositional language throughout the remainder of this chapter.
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C. Models

Definition 1.5. If W is a non-empty set, then for any non

negative integer n, an n-ary neighborhood relation on W is a 
W nsubset of W x (2 ) . If R is an n-ary neighborhood relation

on w and (w, U, ,. . . ,U ) G li, we write: Rw,U..,...,U . (0-aryI n  I n
neighborhood relations on W are subsets of W.)

Definition 1.6. If W is a non-empty set then

Neg W = { (w,U) : w £ U} ;

Conj W = { (w, U , V) : w £ U H V } ;

Pis j W = {(w,U ,V) : w £ U U V};

and Impl W = {(w,U,V) : w G U U V} .

(Neg W is a unary neighborhood relation on W and Conj W, Disj W 

and Impl W are all binary neighborhood relations on W.)

Definition 1.7. If W is a non-empty set then a point-to-point

relation on W is a subset of W x w. If R is a point-to-point

relation on W and (u,v) 6 R, we write: uRv.

Definition 1.8a. If L is a propositional language, a modal

model suitable for L is a 4-tuple M = (W, 0, C, V) such that

1) W is a non-empty set (the set of points of evaluation,
2or simply points) .

3) C = { CD : □ is a connective of L} where P,, isM M
either a point-to-point relation on W or a unary neighbor-

2We reserve the term 'worlds' for use in discussions of 
necessity and possibility.
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hood relation on W if O is a unary connective, and

is an n-ary neighborhood relation on W if □ is an 

n-ary connective of L.

2) 0 is a member of W.

4) V is a function (the valuation) which assigns to each

sentence letter of L a subset of W.

Definition 1.8b. If L is a predicate language, a modal model 

suitable for L is a 6-tuple M = (W, 0, D, P, C, a) such that 

clauses 1) and 2) of the previous definition hold and in addition

3) C = : □ is a connective of L} where is an n-ary

neighborhood relation if □ is n-ary.^

4) D is a non-empty set whose members are called the individuals

of M.

5) P = {p^ : P is a predicate letter of L} where, if P is 

n-ary, is a function from W to subsets of Dn.

6) a is a function from the individual variables of L to D.

a is called the assignment function. It is usually treated

separately, but we take it to be part of the model in order to 

make our exposition conform to the description in the introduction. 

This treatment will also simplify later work.

Definition 1.8c. If L is a propositional language, an algebraic

^It is also possible to interpret connectives of a predicate 
language by point-to-point relations. These interpretations involve 
special complications, however, and will not be dealt with here. See 
[Gabbay, f], Chapters 2,5.
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model suitable for L is a 4-tuple M = (A, D, F, V) such that

1) A is a non-empty set (the set of truth values).

2) D is a non-empty subset of A (the designated truth values) .

3) F = {Fq : □ is a connective of L} where FQ : An A if □

is n-ary.

4) V is a function (the valuation) from the sentence letters of 

L into A.

Definition 1.9a. Suppose L is a propositional language, A G L,

M = (W, 0, C, V) is a modal model suitable for L, and w is a point 

in 11. Then A is true-at-w in M (written: (M,w) f= A) if one 

of the following holds:

1) A is a sentence letter of L and w G V(A).

2) A = DB . ..B^ for some n-ary connective □ of L and either

a) n > 1 and □ w, B-,...,B where for 1 < j < n,—  M 1’ n —  J —
Bj = {u G W : (M,u) 1= B̂ .} or

b) n = 1, is a point-to-point relation and, for all u

in W, (M,u) t= B if w O u orM
c) n = 0 and w G □ .M

A is_ true in M (written: M 1= A) if (M,0) f= A. Otherwise A is 

false in M (written: H A).

Definition 1.9b. Suppose L is a predicate language, A G L,

M = (W, 0, D, P, C, a) is a modal model suitable for L, and

w G w. Then A ̂s_ true-at-w in M (written: (M,w) *= A) if one

of the following holds:

1) A is a 0-ary predicate letter and w G A
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2) For some n > 1 and some n-ary predicate letter Q,

A = Q x,...x and (a(x ),..., a(x ))G 0 (w).I n  1 n ii
3) For some n > 0 and some n-ary connective □ of L,

A = OB, ...B and either clause 2a or clause 2b of the 1 n
previous definition holds.

4) A = Yx B, x is an individual variable and B is a sentence, 

and, for all modal models M' = (W, 0, D, P, Z-, a') if

a'(y) = a(y) whenever y ^ x then (M',w) KB.

5) A = 3x B, there is some function a' such that a'(y) = a(y)

whenever y / x, and (M',w) t= B where M' = (W,0, D, P, C, a').

A _is_ true in M (written: M 1= A) if (11,0) 1= A. Otherwise, A is

false in M (M M A).

Definition 1.9c. Suppose L is a propositional language, B is

in L, and 11 = (A, D, F, V) is an algebraic model suitable for

L. Then the value of ]3 in M (written: V (B)) is defined as

follows:

1) If B is a sentence letter then V (B) = V(B).

2) If B = OC....C for some n-arv connective □, then1 n
V*(B) = F (V*^) ,. ..,V"(C )).□ 1 n

li is true in M ('M t= B1) if V (B) £ D. Otherwise, B is false

in M (MM B) .

In a modal propositional model the world is pictured as a 

collection of different situations which are related to each other 

in various ways. (The actual situation is represented by 0.) For 

example, in the literature models have been considered in which two
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situations are related by the fact that the first has obtained or 

will obtain before the second, by the fact that the second could 

possibly obtain given that the first actually obtains, and by the 

fact that the first is more similar to the situation which actually 

obtains than the second. Each sentence is either true or false 

relative to each situation, and whether a complex sentence is true 

relative to a situation depends on whether its components are true 

at related situations. A sentence is true simpliciter if it is 

true relative to the situation which actually obtains. In a modal

predicate model the picture is refined by the addition of a stock of

objects (to which the individual variables refer) and relations 

among the object (to which the predicate letters refer) . The objects 

are taken to be present in every situation, though the relations 

among them may change. It is not so clear how an algebraic model 

represents the world. We consider these models mainly as a tool

for investigating the modal ones. We shall see later that modal

models can always be replaced by algebraic ones.

Notation. If K is a modal model suitable for the propositional

language L we often write 'W ', 'O', 'C ' , and 'V ' for theM M M M
first, second, third, and fourth coordinates of M, respectively.

Wien confusion is unlikely the subscripts are dropped. If 0  ,

0  , ••. are all the connectives of L then we sometimes write

(WM , 0„, Q  i M , ..., V) for M.M M h M M
Similar conventions apply to modal models suitable for predicate

languages and to algebraic models. We shall not need to talk about 

algebraic models very often, so unless it is explicitly stated other-
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wise 'model' is used as an abbreviation for 'modal model'. If M

is a model suitable for L, w £ W , and r C L, T then weM —
write (M,w) 1= T if, for all A in F, (M,w) h A. Similarly,

M 1= r if, for all A in F, (M,0) t= A. It is also convenient to

stipulate that M M -

Definition 1.10. If M is a model suitable for L, then M

is trivial if either, for all sentences A of L, M N A or, for 

all sentences A, M A. Trivial models do not discriminate at

all among the sentences of the language. It will sometimes be

convenient to exclude them.

Definition 1.11a. If L is a propositional (predicate) language 

and M is a model suitable for L, then M is partially classical 

if the following hold:

1) If '-' is a unary connective of L, then = Neg W^.

2) If is a binary connective of L, then = Impl W^.

3) If ' a '  is a binary connective of L, then = Conj W^.

4) If 'v' is a binary connective of L, then = Disj W^.

Furthermore, if L contains 'A', 'v', and as binary

connectives then M is deductive, and if L contains all the 

Boolean connectives then M is classical.

Definition 1.11b. If L is a propositional language and M is 

an algebraic model suitable for M, then M is classical if L 

is Boolean, for some t, D^ = {t} and (A, FA , Fy , F_, t, F_(t)) 

is a Boolean algebra, i.e., F̂  and F^ are commutative and
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associative, FA distributes over Fv , F^ distributes over F̂  ,

and, for all a, b in A, FA (Fv (a,b),b) =b, Fv(FA (a,b),b) =b, 

FA (a,F_(a)) = t, and F_(a, F (a)) = F_(t).

From definitions 1.5, 1.8a, .l.8b, 1.9a, 1.9b, we know the

following.

Lemma 1.1. If L is a language, M is a partially classical

model suitable for L, and w E W„, then for all A, B in L:M
1) If is a unary connective of L, then (M,w) -A iff

(M,w) ^ A.

2) If '•+' is a binary connective of L, then (M,w) t= A B

iff (M,w) M A or (M,w) 1= B.

3) If ' a '  is a binary connective of L, then (M,w) t= A A B

iff (M,w) f= A and (M,w) f= B.

4) If V  is a binary connective of L, then (M,w) t= A V B

iff (M,w) t= A or (M,w) 1= B.

If L is a predicate language, M' is a model suitable for L,

V  = V  °M' = °M’ Si' = DM ’ PM- = V  S f  = Si’ then the
following also hold:

5) If x ,...,x are among the free variables of A(v,,...,y ),I n  " I n
y1,•••,Yn have no occurrences in A(xn,...,x̂ ) and for

1 < i < n a.,(x .) = a —  —  M i  M
(M' ,w) »= A(y1,. . . .y^).

6) If (M,w) f= 3x A(x) and y has no occurrences in 3x A(x)

then (M,xj)'>= 3v A(y).
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7) If x does not occur free in A then (M,w) t= 3x A iff

(M,w) »= A iff (M,w) t= Vx A.

Proof. 1-4 follow immediately from the definitions quoted. 5 

is proved by induction on the length of A. 6 and 7 are consequences 

of 5.

In view of 1-4 of the preceding theorem, we do not need to know 

anything about or 0^ to determine the truth in M of sentences

which only contain Boolean connectives and quantifiers. For this 

reason if every connective of L is Boolean, or a quantifier, then 

we usually drop the first two coordinates in exhibiting a partially 

classical model suitable for L. Further savings are obtained by

dropping A , V , , - , from a partially-classical model M

suitable for L (regardless of what other connectives are in L).

Thus a classical model suitable for a predicate language is written 

' (D,P,a)'. The P's in P can then be regarded simply as subsets 

of Dn .

Note: The analogs of (1) — (4) above also hold for algebraic models

suitable for L. This follows from some elementary facts about 

Boolean algebras. (See, for example, [Rasiowa, Sikorski, 1963].)

We conclude this section with two lemmas to be used later.

Definition 1.12. If M is a model suitable for L and A is 

a sentence of L, then the truth set of A ini M (written | A j ̂ ) 

is the set of all w in W^ such that (M,w) t= A. Any subset
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of W which is Che Cruth set of a sentence of L is said to M
be definable in M.

Lemma 1.2. Let M and M' be two models for L which are alike

except that Q 4 D , for some n-ary connective □ of L. 
r M M

Suppose for all sets U^,...,U which are definable in M and

all w G O w n ,  ...,U iff w, II,...,U . Then, for allM M 1 n M 1 n
A in L, M N A iff M' N A.

Proof. Straightforward induction on the length of A.

Lemma 1.3. If M is a modal model suitable for L then there

is an algebraic model \'’(M) suitable for L such that, for all 

B in L 6l.(M) f= B iff M f= B.

Proof. Let M = (W, 0, C, V). If for all A in L, (M,0) tf A,

then the algebraic model ({0,1}, {1}, F, U) will do the job where

U and each has range {0}. So we can assume that for some A

(M,0) 1= A. Let A = {|c|M : C £ L}. Let D = {X E  A : 0 S x } .
(This is non-empty by the previous remark.) For all sentence letters

C in L let U(C) = |C|M . Finally, if □ is an n-ary connective

o£ L, let FD C|C11 .... |CJM) ■ l o C ^ . C ^ .  <FQ is well

defined because if | B^ j = j C^ ] for 1 <_ i £  n, then

D w, |C11..|Cn| iff a w , j Dx j,...,[Dn | and hence

I OC,...C I = I OD,...D I . Now let (7f(M) = (A, D, G, U) where1 1 n1 1 1 n1
G = {G^ : O is a connective of L}. The lemma follows by straight

forward induction on the length of B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-20-

D. Truth and Consequences

Definition 1.13. Suppose M  is a class of models suitable for

L and B £ L. Then 13 _is_ logically true with respect to M

(written: H,B) if, for all M in M, M N B.

Wien we say that B is logically true we mean at least that 

B must be true no matter what conditions happen to prevail in the

world. If our definition is to be faithful to this intuition we

must insist that the classes of models we consider be very wide.

We list below some reasonable looking conditions.

Definition 1.14. Let 11 be a class of models suitable for a

language L.

a) M  is normal if it is closed under the operation of shifting 

the designated point of any of its members.

b) If L is propositional, M  is valuation-unrestricted if it 

is closed under the operation of changing a member's valuation 

function.

c) If L is predicate, M  is assignment-unres tricted if it is 

closed under the operation of changing a member's assignment 

function.

Notation. If M  is normal, M £ M  and w £ W . we write MW -------- M
for the model obtained from M by replacing 0^ by w.

For the purpose of axiomatizing a consequence relation it 

turns out to be convenient to stretch the notion of consequence
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slightly, and call a set of sentences A a consequence of T if 

every condition which makes everything in T true makes something
4in A true.

Definition 1.15. Suppose M  is a class of models suitable for

L and f C L, A C L. Then A is_ a_ logical consequence of T 

with respect to M  (written F t=^ A) if for all M in M,

M t= T implies there is some B in A such that M (= B.

^  - n r ,4) : r A}.

We close this section with a simple fact that is important 

enough to be listed as a lemma.

Lemma 1.4. If 1-1 C M' , then f=,M C t= ^  .

Henceforth we take L to be a language and M  to be a class

of models suitable for L.

E. Consequence Relations

In the next two sections we rist some definitions which will be 

needed to solve the problem of axiomatizing logics and consequence 

relations determined by some natural classes of models. In this 

section, we deal with consequence relations.

To axiomatize the notion of logical consequence with respect to 

M  we must first pick out a set of pairs (r,A) such that F 1= i

4This kind of definition was recommended in [Scott, 1971].
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holds, and then give some rules which enable us to obtain, from a 

sequence of pairs such that A_̂ , a pair (T,A)

such that T /=̂  A. But without knowing anything about our class 

of models, except that each model somehow assigns truth or falsity 

to every sentence, we can already list some of these axioms and rules.

Lemma 1.5. If I- = then, for all F, A , , 0 C L:

(1) If r n A 1 4> then T N A .

(2) If T I- A then V U T h A U 0,

(3) If F f- A U {A} and {A} U T i- 0 then F U f A U 0,

(We occasionally refer to properties (2) and (3) as 'expansion' and 

'cut', respectively.) These properties were not chosen at random.)

We will use them in all our axiomatizations of (=„„ for particular 

M. Furthermore we shall show later than any relation which 

satisfies (1) — (3) and one other condition can be regarded as f=̂  

for some M. These considerations motivate the following definition.

Definition 1.16. A consequence relation on L is a binary rela

tion h between sets of sentences of L such that for all F C L

and all A C L (l)-(3) of Lemma 1.2 hold.

Corollary. 1=^ is a consequence relation on L. Let us call it

the consequence relation determined by M.

Notice that intersections of consequence relations are con

sequence relations. Hence if P is a property preserved under inter

sections which holds of some consequence relations, then it makes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-23-

sense to talk about the smallest consequence relation satisfying P. 

Since the set of all pairs of sets of sentences of L is a con

sequence relation on L, it always makes sense to talk about the

smallest consequence relation which contains a certain set of pairs

and which is closed under certain rules.

Lf f— is a consequence relation and T i- A then call (T,A) 

virtually finite (with respect to h ) if there are finite or empty 

sets f  C r, A' C A such that T1 I- A'. Notice that all the pairs

which can be shown to be (-related by clause 1 are virtually finite

and clauses ii and iii generate only virtually finite pairs if

they are applied to virtually finite pairs. Nearly all the rules 

which we will consider later possess this property of "preserving 

virtual finiteness". Therefore the consequence relations we con

sider will all be f initary, i.e., we will have F i- A if and only

if, for some finite or empty sets F1 C F, A 1 C A , T' h A' .

This property will prove important. It is needed for the reduction 

of consequence relations to logics (section F), and for the 

Lindenbaum lemma used to prove completeness (section G) and for 

many of the results in section H.

If all the models in M  are non-trivial, then we can add to

Lemma 1.5 the clause

(4) If F H {A} for all A in L, then T I- $ .

If {a} h A for all A in L, then 4> *- A .

We call a consequence relation I- which satisfies (4) regular. The 

rules expressed by (4) do not preserve virtual finiteness, for this 

reason we try to avoid including them in our axiomatizations, even
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though all of the consequence relations we shall consider turn out 

to be regular. Regularity is also needed for the reduction of 

consequence relations to logics.

We now define several special kinds of consequence relations 

and classify some connectives according to their behavior under 

consequence. When confusion is unlikely we write A for {A}; 

r,A for F u A; and Q T  for {OA : A t  r}, Also F HI— A is

short for F t- A and A I- T.

Definition 1.17. Let L be a language and I- be a consequence

relation on L. Then I- is partially classical if the following 

all hold.

(CC) If 'a ' is a binary connective of L, then r,A,B i- A

iff r,A A B i- A.
(CD) If 'V' is a binary connective of L, then T i-A,B,A

iff F l- A V B,A.

(Cl) If is a binary connective of L, then F,A H B,A

iff F I- A + B ,A.

(CN) If is a unary connective of L, then F,A h A

iff T I- -A,A and T h B,A iff F,-B (- A.

If L contains 'a 1, ' '■*' , or and t- is partially

classical we say h has classical conjunction, classical disjunction, 

classical implication or classical negation, respectively. If f- 

has classical conjunction, classical disjunction, and classical

implication, we say t- is deductive. If, in addition, L has

classical negation we say H is classical.
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The definition of deductive consequence relations was written

in order to facilitate later developments. In particular, we can

see at a glance that if f- is deductive, then T, A, , . .. ,A I-1 m

that we could have written it in a more familiar-looking way.

Lemma 1.6. If L and f- are as above, then h  is deductive 

if and only if it satisfies:

(1') If F,A,B h A then F,A AB h A ;
(1") If T A,A and T t- A,B then T t- A,A a B;

(2') If r I- A,B,A then F t- A V B ,A ;

(2") If r,A H A and T,B I- A then . F,AvB A;
(3') If r,A I- B,A then F h A-*B,A ;

(3") If F h A,A and T,B K- A then F,A-*B f- A.
Proof. (a) Suppose h is deductive. Then (1'), (2'), (3') 

are satisfied and we need only check (1") , (2"), and (3"). We 

check (1") as an example. Applying (1) to A a B f- A a B gives 

A,B h A A B. If F h A,A then by cut F ,B r- AAB. If, in addition 

T b A,B then by cut F i- AAB,A.

(b) Suppose (1'), (2'), (3'), (1"), (2"), (3") all hold. We 

must check (1), (2), (3) for right to left only. We do (1) as an 

example. Suppose F,AaB t- A. Since F,A,Bl-A and F,A,B (- B 

we can apply (l1) to get r,A,B h AaB. By cut, therefore, 

r , A , B h A .
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Definition 1.18. If t- is a consequence relation on L and □

is an n-ary connective of L, then

(a) □ is Montague with respect to J- if r- is closed under the

rule "If A -H- B , and ... and A -I 1- B , then 1 1  n n
□A, . . .A —I I- OB . . . B " .I n  I n

(b) a is normal-Kripke with respect to I- if n = 1 and i- is

closed under "If T I- A, then dT h DA".

(c) □ is normal-K4 with respect ot t- if it is normal-Kripke with

respect to t- and, in addition, f- is closed under "If

□ r I- A then GF h DA".

(d) □ is normal-54 with respect to if it is normal-K4 with

respect to I- and, in addition, t- is closed under "If

A.r (- A then OA,F I- A".
(e) □ is normal-S5 with respect to I- if it is normal-S4 with

respect to h and, in addition, (- is closed under "If

or l-OA.A then OT BOA, OA".

Definition 1.18f. If f- is as above and □ and B are unary 

connectives of L, then (□, □ ) is a pair of tense connectives

with respect to f- if □ and B  are normal-S4 with respect to h

and t- is closed under the rules "If or (- B A,A then

□ FI- G A, BA and "if bFhgA.A, then B F f - o A ^ A . "

The motivation behind these definitions will not be clear until 

the completeness theorem has been proved. It turns out, however, 

that a connective □ which is normal-S4 or normal-S5 with respect

to h can be interpreted as expressing some kind of necessity. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-27-

can think of the points in models which determine h as "possible 

worlds". The relations which interpret such connectives hold between 

two possible worlds if the second could have been the case if the 

first actually were the case, or more briefly if the second is 

possible relative to the first. DA (read "necessarily A" in this 

case) is true at a world w if A is true at all worlds possible 

relative to w. In the case of S4 we require only that all worlds 

be possible relative to themselves, and that u's being possible 

relative to v and v's being possible relative to w entail u's 

being possible relative to w. In the case of S5-connectives we 

add to this the requirement that u is possible relative to v 

whenever v is possible relative to u. As we might expect from 

their rather simple definitions, S4 and S5 connectives may have 

other interpretations as well. It is the necessity interpretation, 

however, that has received the greatest amount of attention.

The normal-K4 and normal-Kripke connectives can also be inter

preted by point-to-point relations. For these connectives, however, 

the relations need not be reflexive, so an arbitrary x normal- 

Kripke or normal-S4 connective cannot be thought of as expressing 

necessity. If a connective is merely normal-Kripke, it can be 

interpreted by a relation which lacks transitivity as well. Thus 

when we say a connective is normal-Kripke or normal-K4, we do not 

place a very great restriction on how it may be interpreted.

If (0,0) is a pair of tense connectives with respect to t- 

then we can think of these connectives as expressing
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**It is and always will be Che case that ..." and "It is and always 

was the case that ... . (It doesn't matter which phrase we match 

with which connective.) The points can be thought of as the world 

at different moments in its history (where "history" is construed 

broadly enough to include both past and future), and the relations 

which interpret □ and R, as the relations "earlier than or

contemporaneous with" and "later than or contemporaneous with."

Finally, the Montague connectives turn out to be just the ones 

that can be handled within our framework (i.e., interpreted by a 

neighborhood relation). This is an extremely weak condition and it 

might be supposed that any connective whose logical properties 

warrant investigation would be Montague. It has been pointed out, 

however, that a connective suitable to represent the phrase "It 

is believed that ..." would not.

Definition 1.19. Let f- and L be as above.

a) (- is Montague if, for every connective □ of L, a is 

Montague with respect to H.

b) f- is normal-Kripke if, for every non-Boolean connective O 

of L, Q is normal-Kripke with respect to H.

c) If L is propositional, h is substitution-closed if

^It should be noted that in what is usually called a tense logic
one connective, G, is taken to mean "It will always be the case 
that..." and another connective H is taken to mean "It always was 
the case that..." Unlike the usual definitions, our definition 
of tense connectives has the advantage that it can be formulated 
without supposing anything about the behavior of the other connect
ives of the language. If I- is classical OA can be expressed 
by the conventional GA v A.
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r (- i implies P  h A' where P  and A' are Che result of

substituting a sentence A for every occurrence of some

sentence letter p in F and A.

Definition 1.20. If H is a consequence relation on a predicate

language then we say ^ *ias classical quantifiers if all the

following hold whenever y does not occur free in A(x):

a) If T h A,A(x) then T t A, 3yA(y).

b) If r,A(x) t- A and x does not occur free in T or A,
then T , 3yA(y) P- A .

c) If T i- A,A(x) and x does not occur free in F or A,
then T h A , VyA(y).

d) If T,A(x) A then T, VyA(y) (- A.

HENCEFORTH WE ALWAYS TAKE h , t- ’ TO BE MONTAGUE CONSEQUENCE

RELATIONS ON THE LANGUAGES L, L'. IF L, L' ARE PREDICATE

F. Logics

Writers of articles and textbooks on logic usually say very 

little about consequence relations and a great deal about "logics."

A consequence relation was defined as a collection of pairs 

(P . ,AJ such that (with respect to some logical framework)

^Although we consider only languages with classical quantifiers, 
more general definitions are possible. See, for example [Gabbay, 1974].
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is a logical consequence of I\. Similarly, a logic is intended to 

be a collection F of sentences such that (with respect to some 

framework) F is the set of all logical truths. It is, of course, 

more convenient to deal with sentences than with pairs of sets of 

sentences, so we might think the logic writers should be forgiven 

for slighting the consequence relation. It turns out, however, that 

if a logic is identified with a set of sentneces, then there are 

many important notions which can't be properly formulated in terms 

of logics alone. For example, there does not seem to be any general 

way to define what it means for a sentence A of L, or a set F 

of sentences of L to be consistent with respect to a logic L ?  

Sometimes it is said that A is Z-consistent iff -A is not a 

member of Z (or iff there is some sentence B such that A B 

is not a member of Z), and that F is Z-consistent iff, for 

every finite subset {A^j.-.jA^} of T, the sentence 

(A^&(...SA^)...)) is Z-consistent. But this account depends on 

Z's having particular connectives, interpreted in a particular way.

A popular way around this difficulty is to use the term 

"logic" to refer not to a mere set of sentences, but to that set 

together with a set of "rules of derivation" which state that 

certain sentences are "immediately derivable" from certain sets

The same goes for properties like 'strong completeness of 
Z' whose definitions depend on the notion of Z-consistency.
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of sentences. We can then say that a set of sentences is

^-consistent if there is some sentence not derivable from F U l  by
9a finite number of applications of the rules of derivation of L.

On this approach, however, logics lose the advantage of being as 

simple and easy to deal with as sets of sentences. Furthermore, we 

don't really want to distinguish two logics just because they are 

associated with different rules of derivation. The only property 

of these rules we are really interested in (and the only one used 

in the definition above) is "Which sentences are derivable from

which sets?" (We don't care, for example, how many rules there are,

or whether derivations tend to be long or short.) But to know this 

property is just to know a consequence relation. For let T f- A 

iff either some sentence in A is derivable from T or A is empty 

and every sentence is derivable from F. Whatever the individual 

rules of derivation are like, we can be sure: that A is derivable

from a set F containing A, that B's derivability from T and 

C's derivability from a set T' containing T entail C's

Rules of derivation should not be confused with the rules 
discussed earlier, i.e., the rules which are used to generate the
set L. Axiomatizations of classical predicate logic (Pred) often
include the following two rules:

(Gen) if A G  Pred then Vx A G Pred;
(MP) if A G Pred and A B G Pred then B G Pred.

The second of these corresponds to a familiar rule of derivation, 
namely "from A and A -*■ B, derive B." The first, however, does not.

9It should be noted that this definition and the one given before 
do not always agree. For example, if L contains all the classical 
propositional tautologies, but no rules of derivation, then p&-p is 
L-consistent according to this definition, but not according to the 
previous one.
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derivability from T U (f - {B}) , and that B's derivability 

from T entails B's derivability from supersets of T . From 

these facts it is easy to establish that h is a consequence 

relation. Hence to say that B is deriable from T is just to 

say that (F,B) is a member of a consequence relation."^

We shall therefore stick to the idea that a logic is a set of 

sentences, admitting that it will often be necessary to bring in 

consequence relations. Under some conditions we can replace talk 

about consequence relations by talk about logics. In the remainder 

of this section we shall state some conditions under which this 

reduction can be carried out. We shall also verify that our 

classification of connectives according to their behavior under 

consequence relations corresponds to a wTell known classification 

according to their behavior in logics.

Definition 1.21. If J- is a consequence relation on a language 

L, then the logic determined by (£.(£0) as t-̂ e set a -̂*-

sentences A of L such that <2> h A.

Definition 1.22. A set of sentences T is a deductive (classical,

regular) logic if it is the logic determined by a deductive 

(classical,regular) consequence relation.

^This argument does not show the need to consider consequence 
relations with plural sets on the right. The arguments against 
restricting the right hand side to singleton sets are apparently 
pragmatic. See [Scott, 1975].
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Definition 1.23. If L is a deductive, regular logic, the finitary

consequence relation determined by L (written: b^) is the set

of all pairs P,A such that one of the following hold: (i) There

is a finite set of formulas {A,,...,A } C F and a finite set of 1 m —
formulas {B ,. .. ,B } C A such that (A A ... a (A , A A ). . .) -*■ I n — 1 n-1 n
(B^V . . . V v ) is in L; or (ii) there is a finite set

of formulas {B,, .. . ,B } C A such that (B. V ... v (B j B  ). . .)I n — 1 n-1 n
is in L; or (iii) there is a finite set of formulas

(A1,. . . C T such that for every formula B

is in I.

is a finitary, deductive, regular consequence relation which deter

mines L. (b) If b and b' are finitary, deductive, regular 

consequence relations and L(t-) = A(b') then 

Proof of (b). Suppose b and b' are finitary, deductive, 

regular consequence relations such that L (b) =L(b') and that 

T b A. Since b is finitary there must be finite or empty sets 

T 1 C T , A ' C A such that T 1 b A ' . If I” and A ' are both

non-empty then by deductiveness 0 b (A, a ... a (a a A ),,.) +1 m-1 m
(B V . . . v (B v'B )...) where the A.'s run through T ' and the1 n-1 n i °
B^'s run through A 1. Since b' also determines L, we know

that 0 b' (A. A... A (A . A A )...)-»• ( B ’/ ... V(B . V B )...).1 m-1 m 1 n-1 n
And, since b' is also deductive, T' I-1 A'. Hence T b' A. If 

F' is empty then we have 0 b A 1. Since b is deductive, then,
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Hence T H 1 A. If A' is empty, then we proceed similarly to

get (A, a ... a (A . A A ). . .) (- 0 . Therefore, for any formula1 m-1 m ’

B. (A. a ... A (A j A  )...) t- B so, since t- is deductive,/ I  m-1 m
<A h (A. a ., . a (A , A A )...) -* B for any B. Hence1 m-1 m
(Ah' (A, A ... A (A , A A )...)->- B for any B, andso T't-'B1 m-1 m
for all B. By regularity, then, T ' I-1 0 and so T I-' A. This

shows H C v-' . Since no assumption distinguishes f-' from I-,

the same argument shows f-' C |-.

Proof of (a). Since L is deductive and regular there must be

a deductive and regular consequence relation’which determines L.

Let I- be such a relation. We first check that is a consequence

relation. Since |- is a consequence relation, A f- A. Since (-

is deductive, $ h A -► A and hence A ->- A is in L. By clause

(i) of the definition of *— r, then, we know that if T 11 A con

tains the formula A then T 1-̂ A . If T A it follows immed

iately from Definition 1.26 that T U T A U Q . It remains to

check the third condition. If T' is a finite set we use

A(r') and v(T') the set of all formulas (A a . . . a (A A A )1 m-1 m
and (A, v ... v (A ,vA )...) respectively such that the A. 's1 m-1 m i

run through F. Now suppose that F f-̂ A,Q and QF'F G . There 

are five cases:

(i) Clause (iii) holds between F and A,Q. Then there is some 

finite set F' Cf and some A in (T1) such that for all

formulas B, A ^ B is in L. But since T' C T U ’F this is

all that is needed to show f U f U 0 .
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(ii) Clause (ii) holds between 0, ¥ and 0 . Then there is a

finite set 0 1 C 0 and a formula B in V (0) such that 

B is in L. This is sufficient to show that I’j'F

(iiia) Clause (ii) holds between T and A,Q and clause (i)

holds between Q, 'F and 0 . Then there is a A' C A U {q }

such that for some B in A', B is in L, and there are

'I1' C (],? and O' C 0 such that for some C in MY')

and some D in v( 0' ), C -> D is in L. Since h

determines L we have 0 f- B and 0 h C ->• D. Since h

is deductive we have 0 h A ' and 'F' f- 0'. If Q does

not appear in A ' or *F' we can add it (clause ii,

definition 1.19), getting 0 f A 1 -(Q) ,Q Qj'F1 -{o} h  0'.

Therefore lF' - {Q}h 0', A 1 - {Q}, and hence 4> h  E ->■ F

where E and F are members of A(^r - {Q}) and

(''((A' - {Q})*-1© '  ) respectively. Since L = L(h) ,

E -> F S L. And since 'F' - {Q} C 'F and (A1 - {Q} U 0') C 

A U 0 this means that r, H' =^A, 0 .

(iiib) Clause (ii) holds between T and A,Q and clause

(iii) holds between Qj'F and 0 . Then there is a

A ’ C A,Q and a B in V(A') such that B is in L.

Furthermore, there is a 'F' C Q , 'F such that for some

A in A('F') A C is in L for all formulas C. Since

b determines L, this means that 4> h B and 0 h A ->■ C

for all C. Hence 0 l- A ' and T I- C, for all C.

Since 1- is regular this means f I- 0. Proceeding as in
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(iiia) we get <£, I- A",Q and 0,’i'" h 0, where A" C A

and C 4'. Hence 4'" h A" . Since (- is deductive we

get <*> I- E -> F where E is now in A(7") and F in

V(A"). This means that E F is in L and therefore

that r,4F i— 0, A .

(iv) Clause (iii) holds between Q, ^ and 0 and clause (i) 

holds between F and A,Q. Then there are finite sets 

F  C Q,? r1 C T, and A' C A,Q such that for some 

formulas A in A(r'), B in v(A') and C in ACT'),

A B is in L and for all formulas D, C ->- D is in L.

As before, this implies F ' h A 1 and y' f- 6 which, in

turn, implies F' h A",Q Q, T" h <!>. Thus F', h A"

so E ->■ F is in L where E and F are now members of

a (F',4") and V(A") respectively. This shows that 

A ,0 .

(v) Clause (i) holds between T and A,Q and also between

Q, Y and 0. Then there are finite sets F1 C F;

A' CA,Q; ¥' C Q,f; and 0' C 0 and formulas A, B,

C, D in A(F'), V(A'), a (’F»'), v ( 0 ') respectively such

that A B and C -* D are both in L. This means that

F' i- A' and T ' I- 0' . As before, this implies that

F' h A",Q and 0,4" f- 0', and therefore that F',41" b A " , 0 
Since h is deductive, <p (- E F where E and F are 

now members of aCF'j'F") and V(A", 0') respectively.

Thus F,!1 hL A, 0 .
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We now check that is deductive. F ,A,B A iff either

(i), (ii) or (iii) of Definition 1.26 holds between T,A,B and A.

If (ii) holds then (ii) still holds between r,A a B and A. If

(i) or (ii) then there is a I” C F,A,B and a A' C A such

that for some C in F' either C -* D is in L for all D or

C E is in L for some E in A'. Hence either 4 f- C + D

for all D or 0 J- C -► E. Since t- is deductive and regular this

means that T' j- A' or T' >- 0. Expanding the left side if

necessary, we get r",A,B (- A ' or F",A,B /- 0 where T" does not

contain A or B. Since h is deductive, r",A AB h A' or

r",A a B h 0 and therefore 0h E F or 0f- E -* G for all G,

where E is in a ( F " , A a B )  and F is in v(A"). Thus E F

is in L or, for all G, E -> G is in L. This shows F,A/i B ^ A.

The other direction of this clause and the other clauses of 

Definition 1.20 are all handled similarly.

We now check that K  is regular. Suppose first that T h.B
L D

for every sentence B. Then for all B there is a set F^ C T

such that for some A^ in F^, A^ -»■ B is a member of L-

Therefore <j> h Ag -*■ B for all B and, since h is deductive,

Fg f B for all B. Therefore T h B for all B. But we are 

assuming that I- is regular so this implies that T t- 0. Further

more, (- is finitary so there is some finite set T ' C T such

that T' h 0. Since /- is deductive A h 0 where A is a member

of A(F'). But if A h- 0 then by expansion A f- B for all B.

Hence 0 h A + B for all B and, since I- determines L, A B
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is in L for all B. This is exactly what is needed to show

Next suppose that B A for every formula B. Then for 

all B there is a finite subset C A such that for-some

Cg in , B -► Cg is in f. Proceeding as before we get that

<!> t- A. But h is finitary, so there is a finite set A' C A such

that <f) t A1 . Since L is deductive we have $ h  C where C is 

in v(A'). Therefore C is in £. Again, this is all that is 

needed to show <p f- A.

The facts that ^  is finitary and determines £

follow immediately from Definition 1.23 so the proof of (a) is 

complete.

According to Lemma 1.7, if we knew h to be a regular, 

finitary, deductive consequence relation, we could replace talk 

about the consequence relation t- by talk about the logic £(b) 

without fear of losing information. For it would always be possible 

to reconstruct h from £(h).

Definition 1.24. If L is a Boolean language and L is a 

deductive, regular Logic on L, then □ is a Montague (Kripke,

K4, S4, S5) connective with respect to L_ if it is a Montague 

(Kripke, K4, S4, S5) connective with respect to the finitary

deductive regular consequence relation which determines L.

The notions described in Definitions 1.22 and 1.24 pertain to 

logics, yet the definitions were given in terms of consequence 

relations. It is also possible to characterize some of these 

notions directly.
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Theorem 1.1. A set L of sentences of a language L is a 

deductive logic if and only if for all A, B, C, D, and Q in 

L, L contains:

1) A + (B -»■ A);

2) A -> A;

3) (A a B) -v (B /v A) and (A v B) (B V A);

4) (A a (B A C)) -> ((A A B) a C) and (A v (B v C)) -*• (A v B) x

5) (A A B) -> A and A (B V A) :

6) A -> (A A A) and (B V B) B;

7) ((A A B) + (C / D)) - (A -> ((B + C) V D);

8) (A + B) - ((B C) + (A -v C)) ;

9) (A -> (B v Q)) + C ((Q a C) -> D) ->- ((A A C) -> (B v  D))) ;

and L is closed under the rule:

MP) If A and A ->■ B are in L, so is B.

Furthermore, if L is deductive, then: L is regular if and only

if A is in L whenever B -> A is in L for every formula B.

Theorem 1.2. A set L of sentences of a language L is a

classical logic if and only if, L is closed under MP and, for

all formulas A, B, C, D in L, L contains 1) - 9) above 

and, in addition, it contains:

10) (-A -B) + (E + A) ;

11) (A v B) -> (-A + B) ;

12) (-A -> B) -v (A v B) ;

13) (A a B) ■+■ -(A + -3) ;

14) -(A -> -B) -> (A a B) .
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The proofs of Theorems 1.1 and 1.2 are omitted.

(The reader who knows some elementary logic may recognize 1-14 

and 1-9 as axiom sets for the classical propositional calculus 

and the negation-free fragment of the classical propositional 

calculus, respectively.)

Definition 1.25. Let L be a logic on a Boolean language L.

If □ is an n-ary connective (n >1) of L then we define the 

following condition on L:

M : For all A,,...,A and all in L, if□ I n I n ’
A. -> B. and B. -* A. are in L for 1 < i < n theni i  i i  —  —
□ A,...A -> OB . . .B and OB. . . .B -> DA. . . .A are l n l n  l n l n
in L .

If □ and 0 are unary connectives then we will also consider 

the following conditions:

N0 : For all A in L , if A is in L so is DA;

K0 : For

in

all

L\

A and B in L, G(A -> B) -> (GA -+ □ B) is

For all A in L, □ A ■+ □□ A is in L;

'*□ : For all A in L, □ A -> A is in L ;

5o : For all A in L, A A is in L ;

T :□ ,Q For

are

all

in

A 

L .

in L, A -* □ - 0 - A and A -*• 0 - □ - A

Theorem 1.3.

i) If L is a deductive regular logic on a Boolean language L, 

then
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a) □ is Montague with respect to L if and only if L 

satisfies MQ ;

b) □ is normal-Kripke with respect to L if and only if

L satisfies Na and KQ;

c) Q is normal-K4 with respect to L if and only if

L satisfies Nq, lyj, and 4a ;

d) □ is normal-S4 with respect to L if and only if

L satisfies N_, K , 4 , and R ;□ ’ □ ’ □ ’ □

(ii) If L is classical, then

a) □ is S5 with respect to L if and only if L

satisfies N , K , 4n , R_,, and 5_ ;□ ’ □’ □ □ □
b) Q ,0 are a pair of tense connectives with respect to

L if and only if L satisfies NQ , NQ , KQ, Kq, 4^,

4_, R , R and T__ .0 ’ O’ D O0

Proof. Let h = •

(i) (a) Suppose □ is Montague with respect to L ^ , and for all

i from 1 to n, A. B. and B. A. are in L.i i  i i
Then □ is Montague with respect to h and, since f-

is deductive, A.-dl- B. for 1 < i < n. Hence

determines L this shows that M is satisfied.

(a') Suppose L satisfies M and for all i from 1 to 

n, A.-4H B.. Since (- is deductive this means thatl l
A. + B. and B. ->■ A. are in L for 1 < i < n. By
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M , DB. . . . B -> O A  ... A and QA. . . .A ->DB1...B □ ’ l n l n  l n l n
are in L. Hence DA, . . .A ~i i~ OB....B .I n  I n

(b) Suppose □ is normal-Kripke with respect to L. Then 

A i n L ^ ^ f - A 15 0(0) h DA => <£ h DA => DA is in L.

So condition is satisfied. Furthermore, A B

l - A - ^ B ^ A ^ B ,  A h  B (since f- is deductive)

=*■ □ (A -* B) , DA f- DB (since □ is normal Kripke) =>

□ (A B) h O A + D B ^ ^  D(A -> B) -*■ (OA OB) =>

□ (A -> B) ->■ (DA -*■ DB) is in L . So KQ is also 

satisfied.

(b') Suppose L satisfies NQ and Kq and F h B. If B 

is in L, then, by condition Nq, DB is also in L .

Hence <p (- DB and, by expanding if necessary, we get

□ F hOB. If B is not in L then by the definition

of t-_ there must be a finite set {A, , . . . ,A } ̂  F such L 1 n —
that (A a. ... a (A . aA )...)+ B is in L . But in 1 n-1 n
this case {A.,..,,A } l- B so since h is deductive,1 n
^ I- (A, + ... + (A -*■ (A ■> B))...). Therefore1 n-1 n
Ax (An B) .. . is in L . By NQ ,

0(A1 (An -> B) . . .) is also in L. But by K

and the fact that L is deductive

(A. (A B) . . .) -+ (□A1 -* (OA -+ . . . -»■ (DA -> DB) . . .))I n  1 2  n
is in L . Hence DA, -> (... -> (DA ->DB)...) is in L ,1 n
i.e., $ h OA, , . . . ,DA , DB. So DA,, . . . ,DA hDB.1 n I n
Expanding if necessary, Df f- DB.
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(c) Suppose □ is normal K4 with respect to h . By

(b), it suffices to show that L satisfies 4q. Since

□ A i- DA and □ is normal K4 with respect to f-, 

□A|-DOA. Hence 0 H D A + O D A ,  so DA OOA G L.

(c') Suppose L satisfies NQ ,1̂ , and 4Q. By (b1),

□ is normal-Kripke with respect to h . Now suppose

□ T V A. If A ̂  L, then by ND , A E A. Hence

0 h DA so OT CoA. If A £  L, then there must be a

set {□B,,...,C1B } C T such that 1 n —
(□B1A ... A (□Bn_1ADBn). . .) -> A is in L . Hence

□B , . .. ,OB (- A. Since □ is normal-Kripke with 1 n
respect to t-, OB^, . . . , DB^ (- DA. But -*DOB^

in in L for all B. so DB. f- D DB. (1 < i < n) .1 x l —  —
Therefore DB, , OB„, .. . ,DB H OA . Hence OT h DA.1’ 2’ n

(d) Suppose □ is normal-S4 with respect to h . By (c)

L satisfies ND , KD, 4Q . Since A h A and □ is

normal S4 with respect to (-, DA H A . ,  Hence

□A A is in L .

(d') Suppose L satisfies NQ , Kq, 4Q , and Rp. By

(c'), □ is normal-K4 with respect to /- . Now suppose

A,F h A . Since 3A ->■ A is in L we have DA h A. 

Therefore OA,F I- A.

(ii) (a) Suppose □ is normal-S5 with respect to f-. By (d) ,

L satisfies NQ , KQ, 4Q, and R^. Since
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O -A (- O -A and L is assumed to have classical 

negation <f) h a -A, - □ -A. Since □ is normal-S5 

with respect to ^ 0 f- □ -A, □ - □ -A. Hence 

- □ -A f- □ - □ -A. But we also know that a -A -> -A 

is in L so □ -A I- -A. This means that A h - O -A.

Thus A I- D - Q -A and A -* O - □ -A is in L .

(a') Suppose L has classical negation and L satisfies

N , K , 4 , R and S . By (d1) □ is normal S4

with respect to h . Suppose DT (- oA, A. Since h

is finitary there are formulas A, ,.. . ,A in T and1 m
B ,. . . ,B in A such that DA......DA h OB, , . .. ,OB ,A.I n  1 m 1 n
But, since f- is normal-K4 OB I-DOB for all B. There

fore □ A , .. . J3h I- ODB , . . . ,aQB ,A. Since L has l m l  n
classical negation, d A, , .. . ,nA , -aaB, ,. . . ,-aoB f- A,I m 1 n
and OB h —  QB for all B. Furthermore □ is Kripke,

so QQB h a — DB and thus -□- -dB - -ddB . By n

applications of cut, aA,,. . . ,DA , -O —  D B , □ — DB h A.1 m 1 n
Since n is Kripke, □ □ A 1,...,nnA , □ - □  DB1 m 1
□ - Q  DB t- A. Furthermore DC h q d C for all C.n
Hence nA, , . . . ,nA , □- □ —  DB, . . . . , a- n —  dB h aA.l m l  n
Now L satisfies 5Q , so - OB J- □ - □ —  DB for all B,

and, by n more cuts , aA, , . . ., aA. , - DB, , . . . , - DB h aA.1 m 1 m
In addition L has classical negation, so

tlA.,.. . ,ciA f- DB , . . . ,QB ,dA, from which we obtainl m l  m
□r h uA, ciA.
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(b) Suppose ( □ , B) is a pair of tense connectives with

respect to (- . By (d) L satisfies K^, K^, 4̂ ,

4̂ , R^, and R^. Since f- has classical negation

we know that 0 h C - A ,  - □-A and 0 t-Q-A, - D-A.

Hence 0 - D - A ,  b - D - A  and' 0 h a-A, a - S-A, from

which we obtain -n-Af-Q-P-A and - q -A -d-B-A.

Furthermore, since Q  and B are both normal S4

with respect to f-, □ -A f- -A and B  -A h -A. So

A -B-D - A  and A -P-B-A. Thus L contains both 

A + B - D - A  and A + tP-B-A.

(b') Suppose L satisfies KQ, K„, 4̂ , 4R, Ra , Re and

T . By (d'), both O and B are normal-S4 with0  B
respect to f- . Now suppose b F f-DA,A. By using the

same reasoning as in (e') we can get

BA, , .. ., BA , - □ —  DB, , . . ., - □ —  DB (- A for some l m l  n
A A in F and some B,,...,B in A. Since B1 m I n
is Kripke, this means, E3£3Â  , . . ., aeA^,

B - u —  DB, , . . ., B- □ —  OB - BA . Furthermore 1 n
3 A - B 3 A  by 4D and - □B1 h B - D —  □B1 by TD a .

So SA, , . . ., SA , - DB, DB f- BA. Hencel m l  n
QA, , . . ., SA h SA, DB, , . . ., DB . An analagous argument 1 m I n
shows that DA, , . . ., PA I- QB , . . ., BB OA. Thus1 m l  n
( O ,  0) is a pair of tense connectives with respect to h .
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G. Completeness and Axiomatization

Throughout this section we assume that L is a language, M  

is a class of models suitable for L, l- is a consequence relation 

on L, and L is a logic on L.

Definition 1.26. f- is sound with respect to A! if t- C .

L is sound with respect to M  if 0 t=^ A whenever A is in L .

Definition 1.27. M  is weakly sufficient for ^ if for all 

formulas A,B A t- B whenever A B . M  is sufficient for h 

if for all finite sets r ,A, T I- A whenever F 1=̂  A. M  is strongly

sufficient for I- if for all sets F ,A , F h A whenever F t=^ A •

Lemma 1.8. If I- is finitary then it is strongly sufficient 

for M if and only if it is sufficient for If h is deductive

then it is sufficient for M  if and only if it is weakly sufficient 

for M.

Definition 1.28. h is weakly complete (complete, strongly

complete) for M  if for all formulas (finite sets of formulas, 

sets of formulas ) X and Y , X t=̂ Y iff X h Y. L is complete

for M  if A £ L if and only if 0 t=^ A.

Notice that to prove completeness (weak completeness, strong 

completeness) it is sufficient to prove soundness and sufficiency 

(weak sufficiency, strong sufficiency).
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Theorem 1.4 (Soundness). Let M  be a normal class of models 

suitable for L. Then

a) Every connective of L is Montague with respect to l=,( .

-b) If every member of M  is partially classical then 1=^ is 

partially classical.

c) If, for all M in M, is a point-to-point (transitive

point-to-point; transitive and reflexive point-to-point; 

transitive, reflexive and symmetric point-to-point) relation 

then a  is a normal-Kripke (normal-K4, normal-S4, normal-S5) 

connective with respect to .

d) If, for all M in M, and E3w are transitive, reflexive,’ M M  ’ ’
point-to-point relations such that is the converse of

Ê j, then (D,a) is a pair of tense connectives, with re

spect to .

e) If L is a predictive language and 11 is assignment-unrestricted, 

then has classical quantifiers.

f) If M  is valuation-unrestricted, then t=M is substitution 

closed.

Proof. Let f= = .

a) Suppose □  is n-ary, =i B_̂ for 1 < i < n and

M = (W, 0, ...,□, ..., V) is a model in /■/.

Case (i): □  is an n-ary neighborhood relation. Then

M (= DA . . .A iff D  o, |An |„,. . . , I A I . But (M,u) A . iff 1 n 'I'M 1 n1M i
M >= A. and, since M  is normal, each MU is also in M. i

Since A. =1 1= B. we know that I A.I.. = {u : MU (= A. } = i i  ' i ' M  i

{u : KU b B.} = |B.|h . Hence □ o,| | M>...,|Afl|M iff
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□ o , IB I , . . . , I B I iff .1 I'M 1 n 1M 1 n

Case (ii): □ is unary and □ is a point-to-point relation.

Then M t= OA iff, for all w in W, o □  w implies MW t= A.

But since Mw is in M  and A =* t= B this is equivalent to 

the conditions for all w in W, o D w  implies ll'' 1= B.

Thus in either case M 1= DA^.

b) Suppose that every M in M  is partially classical. Using

Lemma 1.1 it is routine to verify CC, CD, Cl, CN of Definition

1.17. We do half of clause CN as an example. F I- A,A iff for

all M in M, if M 1= T then there is a B in {A} U A such

that M N B, i.e., iff, if M (= F and M f/ A, then there is

a B in A such that M f= B . But since M is partially

classical, this just means F,-A H B.

c) i. Suppose that for all II in M  is a point-to-point

relation, that F (= A and that M t= (W, 0, ...,□, . . . ,V ) is 

a model in M  such that M f= DF . Then, for all B in F and 

all w in W, of o D w  then (M,w) t= B, i.e., o □ w implies

(M,w) 1= F. But since (M,w) f= F and MW is in /•/, this means

o D w  implies (M,w) (= A, i.e., that (M,o) f=DA.

ii) . Suppose that for all M in M, is transitive and

that DF 1= A. We know by i) above that DCir t=OA. Let

M = (W, 0, .. ., D, ..., V) be a model in M  such that M f= D F . 

Then for all u in W, if o 5 u  then MU h F . But O

is transitive, so for all w in W the following holds: if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-49-

o □  u, then, for all v in W, if- u □  v then o O  v (and

therefore M f= T ) . This is just what is needed to establish

that Mt= DOT. Hence M 1= DA.

iii). Suppose for all M in M, is transitive and reflexive

and A , r  /= A. Let M =  (W,0,..., O  be a model in M

such that M A,r. Then for all u in W, o O  u implies

MU f= A. But since □ is reflexive, o O  o, and hence M (= A. 

Since A,T h  A there must be a B in A such that M f= B.

iv). Suppose that for all M in M, ^  is an equivalence

relation and that OT |= DA ,A. Let M = (W ,0 ,. . . , □,. . . ,V) be

a model in M  such that M f= dF. Then for some B in

□A U {a }, M(= B. We must show that if M #  DA then for

some B in DA, M 1/ B. Now if M OA, then MU H  A for 

some u such that o □  u. Since M /= DT and □  is tran

sitive we know MU f= DC for some DC in OA. From the

transitivity of □, it follows that MU (= CldC and, since

□  is symmetric, we know u □  o. Hence M° f= dC.

d) Suppose, for all M in M, and E3̂  are transitive,

reflexive and is the converse of By c) ii. above

we know that □  and Q  are K4 connectives with respect to 

f=̂  . Now suppose dr t= BA ,A and let M = (W,0,..., Q, Q, .. .V)

be a model in IJ such that M h D F . Then there is a B in

BA U {a } such that M (= B. We must show that, if there is no

such B in BA, then M f= DA. If this weren't true then, 

for some u such that o □ u MU # A. Since M t= CIF and
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□  is transitive, we know MU = OF. But OT f=SA,A so M = BC 

for some BC in BA. From the transitivity of B, it follows

that MU /= B B C  and, since B  is the converse of □,

u B  o. Hence M° f= BC. But we were assuming that there was no 

such C. The case for B  is handled similarly.

e) i) Suppose T 1= A,A(x), y does not occur free in A(x) and

M = (W,0,D,P,C,a ) is a model in M  such that M t= T and

for all B in A M # B. We must show M = 3yA(y) . Since

F #= A,A(x) , we know M f= A(x) . Let M 1 = <W,0,D£C,a' >

where a'(z) = a(z) for z / y and a'(y) = a(x). Then by

Lemma 1.1 (5), M' A(y) . Hence M 1= 3yA(y).

ii) Suppose F,A(x) 1= A and M = (W,0,D,P,C,a ) is a

model in M  such that M t= T U { 3yA(y)} and that x does not 

occur free in T, 3y(A^) or A. M |= 3yA(y) implies there

is an M' such that M' h A(y) and M 1 = <W,Q,D,P,C,a' )

where a'(z) = a(z) for all z  ̂y. Let M" = ( W,0,D,P,C,a" )

where a"(z) = a(z) for z ^ x and a"(x) = a'(y). Since x

is not free in F M" f= F (see Lemma l.lg). Furthermore

M" {= A(x) since M' = A(y) . But M" is in M, so there must 

be a C in A such that M" C. But, since x is not free 

in A this means M t= C.

iii) The cases for Vx are treated similarly.

f) Suppose F f- A and T' and A' are the results of substituting

the sentence A for all occurrences of the sentence letter p
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in F and A. If M is a member of M  such Chat M h  F', 

let M f be the same as M except that V^, (P) = Then

M' (= T. Hence there is some B in A such that M' 1= B.

This implies that M N  B' where B1 is the result of sub

stituting A for all occurrences of p in B.

Before turning to the matter of completeness we define some 

notions that will be useful when we come to construct models.

r C L and A C L. < T,A ) is finite if F U A is finite.

Definition 1.30. ( F ,A > is t- consistent if F \rf A .

Definition 1.31. ( T ' ,A' > is an extension of < T ,A > if

T C  r ' and A C  A 1. A theory T is a proper extension of a theory 

T' if T is an extension of T', but T' is not an extension of T.

Definition 1.32. A theory is maximal (-cons is tent if it has no 

proper (-consistent extensions.

Lemma 1.9 (Lindenbaum's Lemma). If h is finitary, then every 

h consistent theory has a maximal f- consistent extension.

Proof. Suppose < r , A  > is an H consistent theory in L. Let

The terminology here follows [Gabbay, 1974].
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A_= A . If <r. u {a.,,} A. > is consistent, let F.,n = F .'> {A},0 1 l+l I i i+l i '
and let A. , = A.. Otherwise let T.., = T and A.,, = A. U {A}, i+l i i+l i+l i
Let F' = ( J r .  and let A' = (J A. . Claim: (F',A')i ■ y  11<W 1 <w
is a maximal Hconsistent theory. If it is not consistent, then

there are finite sets F" £  F' and A" C A' such that F" h A".

Hence there is some i such that T. h A.. Let m be the least l l
such i (since (T^jA^ ) is f-consis tent̂  m > 0) . From our con

struction we know that A is in either T or A . Furthermorem m m
it would only be in T if T t/ A so it must be the case that

J m m m
A is in A and T . ,A (- A . . But since A = A , U {a }m m-1 m m-1 m m-1
and F = F , , T . b A , ,A. By an application of cut, m m-1 m-1 m-1
F , j- A , contradicting our assumption that m was the firstm-1 m-1
inconsistent stage. This proves consistency. Now suppose F' C T

and A' C 0 and T t- G . Let A be any formula in 'F . The

A must be one of the A.'s on the list, say A , and thereforel m
A must be in F or A , . But A C A' C 0 so A could not m-1 m-1 m-1 — ~~
be in A' without violating the consistency of ( ’F, 0 > . Hence

T C  T'. Similarly, if B is in © it must be in A for some m— m
and hence in A'. Therefore (F'jA1) has no proper extensions.

Lemma 1.10. Suppose ( T,A ) is maximal h consistent.

(a) For all A in L, A is either in F or A , but not both.

(b) If f- is partially classical then:

If L contains a , A /. B is in F if and only if both A 

and B are in F; if L contains V, AVB is in T if 

and only if either A or B is in T; if L contains then
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A -> B is in T if and only if either A is not in F or B 

is in F. If L contains - then -A is in T if and only

if A is not in T.

Proof. (a) Suppose A was in neither F nor A. Then we must

have F,A h  A and T h A,A, (otherwise ( T U (A},A ) or

( T,A U{A} ) would be a proper |- consistent extension of 

< T,A )). By cut, T I- A, which contradicts the consistency of 

(r,A).

(b) We prove two cases and leave the others to the reader.

(i) A a B i- AaB and |- deductive implies A,B <- A A B. Hence if

A and B are in F, AAB can't be in A. By (a), then A,B in

T implies A a B in F, A,B h A and A,B f- B imply AAB I- A and

AAB h B. Hence AaB in T implies niether A nor B can be in

A, i.e., both A and B must be in F.

(ii) A B f- A B implies A B,A t- B. Hence if A B and

A are in T, B must also be in F, i.e., if A -> B is in F, 

then either A is not in F or B is. A,B I- B and A t- A,B

imply B h A -> B and t- A, A + B, respectively. Hence if B

is in F, A ->- B must be in T and if A is in n . I- in T

then A ■+ B must be in F.

By part (a) of the above we can identify a maximal consistent

theory (r,A) with its first coordinate T; for A must always

equal L - F. We shall do this frequently in what follows. If

(F,A) is such a theory and A G F, we call T a maximal

h consistent set containing A.
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So far we have not distinguished between propositional and 

predicate languages. For the next few pages, however, we interrupt 

this uniform treatment, and assume until further notice that L is 

a propositional language.

Definition 1.33a. If A is in L, then ||A||̂_ is the set of all

maximal -consistent sets containing A.

Lemma 1.11a. llAll̂ C ||B||̂_ if and only if A h B.

Proof. If A h B, T is maximal consistent and A is in T

then clearly B must be in T. If A (/ B, then < {A},{B} > is

h consistent and has a maximal consistent extension T. But T

will contain A and not B.

Definition 1.34a. If O is a Kripke connective with respect to

h, then II □ ll̂_ is the binary relation which holds between maximal

h consistent sets u,v if and only if, for all sentences A, A

is in v whenever DA is in u. If □  is an n-ary Montague

connective which is not a Kripke connective, then II □ II is the

relation which holds between a maximal f- consistent set w and an

u.-tuple fu, ,...,u ) of sets of maximal t- consistent sets if and  ̂ 1 n
only if, for some formulas A,..., A in L, u, = II A, II , . . .,7 ’ n 1 1 r-
u = IIA II and A, . . .A is in w. n n t I n

Definition 1.35a. A canonical modal model for h is a modal 

model (W ,0,C ,V > suitable for L such that w is the set of

all maximal f- consistent theories, C = {II OII : □  is a connective

of L} and V(p) = {w E W : p E  w } .
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Lemma 1.12a. If M is a canonical modal model for H, then 

(M,w) 1= A if and only if A *= w.

Proof. Let M = (W,o,C,V ) . We prove the lemma by induction

on the length of A.

If A is atomic, (M,w) 1= A if£ w £ V (A) iff A £ w.

If A = QA^...An and □ is not Kripke then (M,w) (= A iff

□  w, I A, I . .. , I A I But each A. is shorter than A, so by1 I'M, 1 n'M j
the induction hypothesis (M,v) f= Â. iff Â  £ v. Hence

|A I = IIA. II and (M,w) 1= A iff 5v, IIA || , . . . , || A || . Now,' j ' M j t -  l b  n h
if (M,w) # A then not O w, IIA II ,. . ., IIA II . Since □ = II C3II ,II- n f- f-
this means OA^...A^ can't be in w. On the other hand, if

(M,w) f= A then Dw, II A, II. ,...,||A II, , so there are sentences lb- n h
B^,...,Bn such that for 1 < i < n = anc* ^ l ’’’̂ n

is in w. So by Lemma 1.11a, B.-l h A. for 1 < i < n, and,i i  — —
since f- is Montague, QB,...B -I I- QA, . . .A . Hence DA, . . .A& 1 n I n  I n
must also be in w.

‘ If □  is Kripke and (M,w) 1/ D B , then there is some u such 

that w □ u but (M,u) B. By induction hypothesis this means

that B £ u. So since O = II d  II  ̂ , OB can't be in w. Conversely,

suppose B $ w and let u be the theory ( {C : C £ w}, (B) ) .

u must be consistent, because otherwise we would have F f- B for 

some F . C {c : C £ w} and hence OF b DB (since □ is Kripke),

thus violating the consistency of w.

• We can therefore extend u to a maximal f- consistent theory u' . 

Clearly w II □ ||̂_ u' and B u'. By induction hypothesis (M,u') M B. 

Hence (M,w)^DB.
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We now want to prove the analogue of Lemma 1.12a for predicate 

languages. So we assume below that L is a predicate language.

Definition 1.36. A theory (T ,A) in L is t- saturated if it 

is maximal h consistent and for every formula A of the form 

3xB(x) A is in T if and only if, for some variable y', B(y) 

is in F.

Lemma 1.13. Let L' be the language obtained from L by adding

a countable collection of new variables, and let t-' be a finitary

consequence relation on L' such that I-1 H (2^ x 2̂ ) = f-. Then

every f- consistent theory has a h' saturated extension.

Proof. Let (T ,A) be a I- consistent theory and let (T',A 1) be

a maximal f- consistent extension of (F ,A) . Let A^.A^,... be an

enumeration of all the formulas of L' and let u„,u ,... be an1’ 2
enumeration of the variables in L 1 - L. If x = u. we say x has

index i and if x is a variable of L we say it has index 0.

We define the theory T+ in stages: = (T f , A ') . If A is, U r n
not of the form 3xB(x) then is obtained by adding A^ to

the left coordinate of T+ if the result is I-' consistent, and by m
adding it to the right side otherwise. If A = 3xB(x) then letm
j = m plus the greatest number which is the index of a variable

that occurs free in A,,...,A . T+ ,, is then obtained by adding 1 m mfl J b

3xB(x) and B(u.-) to the left coordinate of T+ if the result j+i m
is (-1 consistent and by adding 3xB(x) to the right coordinate 

otherwise. Let T+ be the union of all the T^'s- is easy to
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to check that T+ is a I-' saturated extension of (F,A).

Let L' be as in Lemma 1.13 and let (-1 be the relation which 

holds between two subsets I” and A' of L' if and only if there 

are F C L  and A C L  such that T b A and T ', A 1 are obtained

from r , A  by uniformly substituting variables not in L for some

or all of the variables in T,A. It is easy to check that i) b' 

is a consequence relation; ii) b ' D (2L x 2L) = (- and iii) (- is

finitary (deductive, classical regular) whenever b is. Also □ 

is Montague (normal-Kripke, normal-K4, normal-S4, normal-S5) with 

respect to ' whenever it is Montague (normal-Kripke, normal-K4,

normal-S4, normal-S5) with respect to I-.

Definition 1.33b. Let be the set of all h ' saturated sets

of sentences of If A is in L, then IIAll̂ is the set of

all w in Wj_ which contain A.

(Notice that the notation here is the same as that intioduced in 

1.33a. The intended interpretation will always be clear from context.)

Lemma 1.11b. ||AllC ||B||̂ if and only if A (- B .

Proof. If A I- B, then Ah' B. Therefore, if w is a b'

saturated theory containing A, it must also contain B. Conversely, 

if A if- B, then ( {a},{b} > is b - consistent and therefore b' 

consistent. By Lemma 1.13, then, there is a b' - saturated set con

taining A but not B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-58-

Definition 1.34b. If D is a connective of L, then || Oll̂

is the relation which holds between w and (U,,...,U ) if and1 n
only if there are sentences A, , .. . ,A in L such that1 n
IL = II A. II, ,..., U = IIA II and w is a member of W which con-1 1 i- n n l- f-

tains DA^. ..A^.

Definition 1.35b. A canonical modal model for |- is a modal

model (W,0,D,P,C,a ) suitable for L such that w = Ŵ _, and

the following hold. D is the set of all individual variables of

L'. For each n-ary P in L, P £ P is defined by:

P(u) = { (a(x ),...,a(x )) : P(x ,. . . ,x ) E u}. Finally, e1 n 1 n
is defined as in Definition 1.35a.

Lemma 1.12b. If M is a canonical modal model for h, then

(M,w) *= A if and only if A 6w.

Proof. Let M = (W,o,D,P,C,a > . We prove the lemma by induction

on the length of A.

• If A = P x 1...xn then (M,w) 1= A iff (aCx^ ,. . . .a(x)) E P (w)

iff Px,...x E w .1 n
If A = DA^.-.A^ the proof proceeds exactly as in Lemma 1.12a

except that the application of Lemma 1.11a is replaced by an appli

cation of Lemma 1.11b.

If A = 3 xB then (M,w) f= A implies there is a model M 1

such that (M',w) 1= B and M' = < W, 0,D,P, C,a' > where, for all

variables y not identical to x, a'(y) = a(y). But M' is also

a canonical model for (-, so B is in w by the induction hypothesis.
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Since B ' B and f-' has classical quantifiers, B H 3xB.

Hence 3xB must be in w. To prove the other direction, suppose

3xB(x) is in w. Since w is {-' saturated, there is a variable

x^ such that B(XQ) i-n Wi BY induction hypothesis,

(M,w) h  B(xq). Therefore (M,w) t= 3zB(z) where z occurs nowhere

in B(x ) and B(z) is the result of substituting z for x in o
B(x) (which is not necessarily the same as the result of sub

stituting z for Xq in B(xq)). Hence by Lemma 1.1(b),

(M,w) = 3 xB (x) .

» I f  A = VxB(x) the proof is similar to the last case.

In what follows, L is again either a predicate or proposi

tional language.

Theorem 1.5 (Completeness). Let |- be a consequence relation 

on L. Then there is a normal class i-1 of models suitable for L 

such that H is strongly complete for I], and the following hold:

(a) If I- is partially classical then each member of M  is 

partially classical.

(b) If O  is normal Kripke (normal K4, normal S4) with respect

to h, then for all M in M, is a poinc-to-point

(transitive point-to-point, transitive and reflexive point-to- 

point) relation.

(c) If f- has classical negation and E3 is normal S5 wTith respect 

to h, then for all M in M, is a transitive, reflexive
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and symmetric point-to-point relation.

(d) If F has classical negation and (P, B) is a pair of tense

connectives with respect to I- then, for all M in M,

□  , and S. are transitive and reflexive and Q, is theM M M
converse of B  .M

Let !■} be the set of all canonical modal models suitable 

for L. First, suppose I- is partially classical.

Claim: If ' a ' is a connective of L and if U = | ^ | jj and

V = | B | M for some A, B in L and some M in M  , A w UV

iff < w ,U ,V ) € Conj W.

Proof. A w UV iff there are C, D in L such that

|A|M = U = IICIÎ and | B | M = V = IlDll̂ and C a D is in w. By

Lemmas 1.12a, 1.12b IAI = ||A|| and | BI = ||B|| . Bv LemmasM I- ' 1 M (-
1.11a, 1.11b, A -i i— C and B —t J— D . Since A is Montague,

AAB -< l— C a D. Therefore A w  UV iff A B is in w. But by

Lemma 1.10 this holds iff A and B are in w, i.e., iff

w S II All̂  n IIBII. This proves the claim. Analagous arguments

12 If R is a binary relation on W then call a point v
R-accessible from U if there is a finite sequence u^,...,un
of members of W such that u Rû _, . . .,un_-̂ Run and u,̂ Rv.
It is easy to check that if □ is the only non-Boolean connective
of L we can delete all points in a ihodel M not O-accessable
from the designated point, without affecting the truth in M _of 
any sentence. If we do this for a connective □ such that D  
is an equivalence relation, the remaining points will all be related 
by D. In view of these remarks (c) explains why in a language with 
one non-Boolean connective □ which is S5 with respect to f- the 
truth clause for O  is often written (M,w) != A iff for all 
w B L's (M,xv) h A. If there are other non-Boolean connectives 
present, however, this does not hold.
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establish that whenever L contains the appropriate connective 

and U and V are definable in M,

v w, U, V iff <w,U,V > £ Disj W;

-*■ w, U, V iff ( w ,U ,V > £ Impl W; and

- w, U iff < w,U > e Neg W.

If h is not partially classical, let M  = M  . Otherwise, let 

M  be the class of all models which can be obtained from members 

of M  by replacing •* , V , ■+ , - by Conj Ŵ _, Disj W ,

Impl W, and Neg W , respectively.

(i) j- is complete for M. By Lemma 1.2 and the previous claim it

is sufficient to show h complete for M  • Suppose T I- A 

for T C L, A C L. Then if M = T (MS if) then T C 0M> 

Since 0M is f- consistent all of A can't be in L - 0^,

and so F K } .A. If T (/ A then < F ,A > is (- consistent.

Hence ( T,A ) can be extended to a h maximal consistent

theory w (if L is propositional) or a h saturated theory

w (if L is predicate). In either case there is an

MW £/■/ such that if f= F and for all B in A, MT' rf B .

Hence Y - A .

(ii) From the definition of M  it is clear that, if h is partially 

classical, each member of M  is partially classical and, if

□ is Kripke with respect to [-, that for each M in M  

□ M is point-to-point.
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(iii) Suppose □ is K4 with respect to f- and u □ v, v □

We show that u □ w. It suffices to show for all A, □

implies A G w. But since OA f- D A  and □ is K4,

OA I- OOA. Hence O A  G u implies O C A  G u. Since

u II □ || v, then DA G v. But v || □  II w so A G  w.t- h

(iv) Suppose □  is S4 with respect to h . By (iii) □  is

transitive; it remains to show that □  is S4. We mus

show that for all w in W w || OII|_ w. But A f- A an 

□  S4 with respect to , so OA h A. Hence OA G 

implies A G w, and (by the definition of || ij 11̂ ) 

w l|OHH w.

(v) Suppose h has classical negation and O  is S5 with

to f-. By (iv) □ is transitive and reflexive. We mus 

that for all u, v in W u II □  ll̂_ v implies v II □  || u

i.e., that if v contains all A such that A is in

then u contains all B such that B is in v.

So suppose u || O I I v  and B ^ U. Since G b f- OB and

I- has classical negation, 6 h - DB, DB. Since O  is 

this means <j> f- D-uB, DB. By classical negation 

-□B (-O-OB. But we also know B f- B, so because □

S4, OB f- B and, because h has classical negation,

-B |- - OB. An application of cut yields -B l-G-DB. N

since B is not in u. By Lemma 1.12a or b, -B G u.

Therefore □  - DB is also in U. But u || □ || v, so

is in v, i.e., ClB is not in v.

w

respect 

t show

u ,

S5, 

is
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(vi) Suppose f- has classical negation and (□,□) is a pair 

of tense connectives. By (iv), □  and 0  are transitive 

and reflexive. Claim: For all u, v in W, u IlDll̂ v

iff v IIBII u.

Proof: Suppose u IIdll v and 9A  S v. By reasoning similar

to (v) we get -A HD-0A. Hence if A weren't in u then 

□ - BA would be. Since u II □  IIj_ v therefore A would not 

be in v. Contradiction. The other direction is proved 

similarly.

We have considered a number of conditions which we described 

as properties of connectives. For the following corollaries to 

the completeness theorem we. reformulate these as axioms and rules 

for consequence relations and logics. For easy reference we collect 

and label some of them below:

CC: If A is a connective of L, F,A,B H A iff F,Aa B t- A;
CD: If v is a connective of L, T t A,B,A iff T I- A v B ,A;

Cl: If -> is a connective of L, F,A H B,A iff T I- A ~y B,A;

CN: If - is a connective of L, T,A t- A iff F H -A and

F H A, A iff T -A h A.

I-L̂: □ is n-ary and if A^ ^ :- B_̂ for 1 <_ i _̂ _n, then

□A, . . .A -I HUB . . .B ;I n  I n

K̂ : □ is unary and if F H B, then IIlF H DB;

4n : □  is unary and if Y I- B, then □FHlIIB;
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R^: □  is unary and if A,ip h H then DA,^ I- H ;

S_̂ : □  is unary and if OF (- GA,B then DF f- O A , O B ;

T : □  and B  are unary and if BT b DA,B then BF DA, BB,
□ a

if Cir b 3A,B then dT (- BA,.DB.

MP : If A £ L and A B E L then B E L;

: If A B A  then CIA E L;

: d(A - B) -> O A  + DB) G L;

4L : lIA D d A  £ L\□
RL : DA -* A £ L;a

5̂ , : A + □  - □ - A S L ;O

: A -► B  - □  - A € L and A + D  - E  - A £ t;

D: The following are in L:

A -► (B -► A) , A + A, (A A B) •> (BA A) ,

(A J B) -* (B V A) , (A A (B A C)) - ((A A B) A C) ,

(A ■/ (B V C) ) ( (A v/ B) v/ C) , (AAB) + A,

A +  (BVA), A -*■ (A A A) , (B7B) + B,

(A aB) ->■ (C V D) -> (A -* C (B -*• C) v D) ) ,

(A -> B) ((B -* C) - (A -> C)) ,

(A -*■ (B V Q)) -> (((Q AC) •> D) - ((A AC) + (B V D))).

CN: The following are in L:

(-A -B) -*■ (A -»■ B) , (AVB) + (-A-> B),- (-A -»■ B) -»■ (A VB) ,

(A A B) - (A ->■ -B) , - (A -> -B) -> (AAB).
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Let L be an arbitrary propositional language, all of whose 

non-Boolean connectives are unary, and let , (-̂ , ^  )

be the smallest consequence relation I- on the propositional lang

uage L such that: i) ■ f- is closed under CC, CD, Cl and CN,

and ii) for all non-Boolean connectives □, I- is closed under

kq  (Kd  and 4n  ; KQ  , 4Q, and P^ , ^  , 4^ RD  and Sa  ).
1 2  3 4If L is Boolean, let (L^ , ) be the smallest

set L C l  such that: i) L satisfies D; ii) for all

non-Boolean connectives, □, L satisfies (K^ and 4^ ;

Kn ’ ’ and ^  ’ 4c  ’ Ra and sc  ); and iii) L satisfies
t 1 2  3MP and N_ for all non-Boolean O. Let M  ( M  , M  ,U L L L

4
M L) be the class of all partially classical modal models M 

suitable for L such that for all non-Boolean connectives □, M
is a point-to-point (transitive point-to-point; transitive and 

reflexive point-to-point; transitive, reflexive and symmetric point- 

to-point) relation.

Corollary (Axiomatization of Consequence Relations). 

f=. = lj for i = 1,2,3,4.
i

Proof. By Theorem 1.4, C |= . for i = 1,2,3,4. Conversely,

by Theorem 1.5, = h lf for some M  C for i = 1,2,3,4. But,

for all classes M, M' of models, if M  C M' then

C • Hence t= . C ly for 1 < i < 4.M' ~  A  .,1 - L - -
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Corollary (Axiomatization of Logics) .

is complete for (i = 1,2,3,4).

Proof. By Theorems 1.2 and 1.3, = L( ). Hence A £

iff |i A iff t= . A.
fi

Note: If L and L' each contain only a single non-Boolean
1 2  3 4connective then L^, L.̂ , LL and are the logics usually

labelled K, K4, S4, and S5, respectively. It is clear that

we could extract axiomatizations for other logics and consequence

relations from Theorem 1.5. Two more examples are worth noting:

(1) SC = the smallest classical logic on a language L with no 

non-Boolean connectives is complete with respect to the class 

of all classical propositional models for L (and therefore 

for the class of all classical algebraic models for L).

(2) Pred C = the smallest classical logic on a predicate language 

with no non-Boolean connectives except the quantifiers is 

complete with respect to the class of all predicate models for L.

Frames If M = (W,0 , C, V) is a model suitable for L, the

triple F - (W,0 ,C ) is often called a frame for L. A sentence

B of L is true in the frame F if, for all models M such that

W , = W, 0,. = 0 and cw = C, M f= A. It is clear that completenessM M M
with respect to a class of frames (defined in the obvious way) is

equivalent to completeness with respect to a valuation-unrestricted

class of models. The question of which logics are complete with
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respect to classes of frames has received a great deal of attention 

in the recent literature. As we have just seen, K, K.4, S4, S5

and SC are all complete for classes of frames. It follows from 

Theorem 1.4f that if L is not substitution-closed, it will not 

be complete for a class of frames. The converse does not hold. 

Substitution-closed logics have been constructed which are complete 

for a class of models, but which are not complete for any class

* * 13 of frames.

H. Equivalence, Translation and Definability

Thus far we have identified logics with sets of sentences, and 

consequence relations with sets of pairs of sets of sentences. With

in this framework we would be forced to say, for example, that the 

classical propositional calculus formulated with only the connectives

and 'a ' primitive is a different logic than the classical 

propositional calculus formulated in terms of This

certainly does not square with our ideas about what a logic should 

be. What is needed is a natural equivalence relation on logics and 

one on consequence relations which will make it possible to lump 

together the sets which are really the "same" logic or the "same" 

consequence relation. In this section we take up this problem, as 

well as some closely related matters concerning when a consequence 

relation is a fragment of another, and when a connective is defin

able from others (with respect to a consequence relation).

"^See [Fine, 1974] and [Thomason, 1974].
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All of this will be useful in later chapters. We shall deal expli

citly only with consequence relations, but it should be clear that 

everything we say can be applied equally well to logics which meet 

appropriate conditions.

Suppose first that we are interested only in the behavior of 

individual sentences under consequence relations. From the defini

tion of consequence relation, we can see that a consequence relation 

restricted to singleton sets is just a weak partial order on the 

set of sentences. We might be tempted to say that I- and I-1 are 

equivalent if they determine isomorphic weak partial orders, i.e., 

if there is a 1-1 function f from L onto L' such that 

A I- B if and only if f(A) I-' f(B). But this is too strong. For 

when we study consequence relations we are only interested in the 

distinctions that can be made with the consequence relation.

Whether A and B are different sentences does not matter so 

much as whether there is some sentence C such that C I- A and 

C 1/ B or such that A h C and B (/ C. If f- is Montague, then

if A -i t- B there will not be any way to distinguish them. As

far as H is concerned, we may as well identify them. Speaking

loosely, to require the two weak orders to be isomorphic would be

to insist that there be as many ways to express a single idea in 

L' as there are in L. But we are only interested in which ideas 

can be expressed, not in how many ways there are to express them.

Let us, therefore take our earlier remarks seriously and identify 

two sentences which bear the relation -| H to one and other. Since 

I- is a weak partial order -I I- is an equivalence relation, and )-
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induces a partial order on the resulting equivalence classes. As a 

first approximation, then, we take two consequence relations to be 

"the same" if they determine isomorphic partial orders.

Definition 1.37. is_ similar to I 1 (written 'h ~  f-' ') if

there is a 1-1 function from L / —i I- onto L ' / — i f- ' such that, for

all A, B in L [A] > [B] iff f([A]) >' f([B]) (where [A] > [B]

means that for all A in [A] , and all B in [B] , A I- B) .

In practice, it is not so easy to find the function required 

by this definition. For this reason we give an alternative defini

tion and prove it equivalent to the original one.

Definition 1.38a. is similar to t-' via (written

fl f2' f- ^  f-’ ) if f1 and f^ are functions such that

f̂  : L L', : L' -► L and the following hold for all A, B

in L and all C, D in L':

1) A h B implies f^(A) h' f^(B);

2) C D implies f.(C) h f,(D);

3) A -II- f2(f1(A));

4) C -4 t-' f1(f2(C)) .

f lf 2Theorem 1.6. I—  ̂h' iff there are su°h that h  ^  h

Proof. (a) Suppose h f-', and let F be the appropriate

bijection. Let C: L/-ft- U L'/-I L U L' be any function which

satisfies the condition C([A]) S [A] and define f ̂ : L L ' by
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f 1 (A) = C (F ([ A])) and f£ : L' -> L by f 2 (C) = CF 1([C]). It is

then easy to check that f1 and f2 satisfy conditions 1-4 of

Definition 1.38a.

flf?(b) Suppose h t-1 . For all [A] in L/ —l I- and all [C]

in L'/4 F, let F([A]) = [fx(A)].

1) F is well defined. [A] = [B] implies A 4 I- B implies

f x (A) -t h f1(B) implies [f]_(A)] = [ f x (B) ] implies

F([A]) = F([B]) .

2) F is 1-1. F([A]) = F ([B]) implies [fx(A)] = [f1(B)]

implies f^A) -ll- fx(B) implies f2(fx(A) -4 F f^(fX(B))

implies A -I f- B implies [A] = [B] .

3) F is onto. Let [C] f L'/-4i- . C -I b f^(f2(C)) implies

[C] = [f1(f2(C))] = F ([f 2(C)]).

4) F is order preserving. [A] > [B] implies A b B implies

f1(A) b' f1(B) implies F([A]) >' F([B]).

5) F  ̂ is order preserving. F([A]) >' F([B]) implies

fx(A) b' f1(B) implies f2(fL(A)) F f2(fL(B)) implies A M

implies [A] > [Bj.

1) - 5) imply f- I-1 .

Definition 1.38a, we said, was introduced to provide a more 

convenient account of similarity than that provided by Definition

1.37. It also has another advantage, however: it can easily be

extended to cover the behavior of sets of sentences under h .

We will use ’f(T)’ where T is a set of sentences to mean the
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range of f restricted to T, i.e., f(F) = (f(A) : A £ D  . We 

will also use 1f((A,B))' to mean (f(A),f(B)) and ’ f ( ( r , A ) ) '  to 

mean ( f ( D , f ( A ) ) .

Definition 1.38b. ^ is strongly similar to I-1 via F^,f?

flf2(written f- ^  h ' ) if f^ : L -*■ L' , f2 '■ L' L and the

following conditions hold.

1) For all T,A ^ L, T h A implies f^(T) I-1 f^(A).

2) For all i p, ©  ̂ L', ip h ' 0  ' implies f 2(^) ®

3) For all A in L, A H h f^f^A)).

4) For all C in L', C-l^-f^f^C)), f- is strongly similar

f± V ' .

In general we are interested in the behavior of sets rather 

than single sentences and therefore we shall not often be satis

fied by weak similarity. The next theorem, however, states con

ditions under which we need not look beyond weak similarity. Before 

stating it, we prove the following lemma.

flf2 ,Lemma 1.14. Suppose h and )-1 are deductive and h f-

b) f x(A v B) -3 P f1(A) V f L(B) .
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Proof. We prove a). Since b is deductive, A a B (- A and 

A A B b B .  Hence f^AftB) b' f^A) and f 1 (A A B) b' f x (B) .

Therefore f^(A A B) b f1(A) A f^(B). For the other direction, note

that f^A) A fx(B) f1(A) so f2(£]L(A) A f ̂ (B)) I- f2(fx(A)) b A.

Similarly f-2(f (A) A f^B)) b B. Therefore,

f2(f1(A) A f X(B) ) b A A B. This means f 2 (f ± (A) A f ± (B)) f^AAB),

so fx(A) A fx(B) b' fx(AA B).

Theorem 1.7. If b and b 1 are regular, finitary and deductive,

flf2 , flf2 ■b i b  iff b ^  b‘ .

Proof. The "if" direction is immediate. To prove the "only if" 

flf2 ,direction, suppose b r*_. b . We need only verify clauses a 

and b of Definition 1.41b. Since these are symmetrical, we do 

only a. Assume si b 7. . Since b is finitary there are finite

or empty sets IT1 CIT, Z 1 C E such that H' b Z' .

(i) Suppose IT' and Z' are both non-empty, say H' = {A^...^}

, . . .,B } . Sim n
(A A ... A(A A A ) . . .) b (BI m-1 m 1
by Lemma 1.14, ... a (f-|.̂Am_l^ A f ’ ‘ • ̂ '

(f, (B ) V ... y (f (B ) V f (B ))...). Since b' isI I  1 n-1 I n
deductive, f^ (H ') b' f^CZ'). Hence by expansion
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A h (B̂  v ... v (Bn B^)...). Therefore, for all A in L,

f.(A) h' (f.(B ) V ... v (f (B .) V f (B ))...). In particular,1 1 1  1 n-1 1 n
this holds when A = f^A1. for any A1 in L'. Since f-1

is deductive, this means that for all A 1 in L',

f1<f2̂ '))H' f X(ET) . Since A' -4 F f ^ A ' )), we get for all A',

A 1 h ' f (S '). Since h  ' is regular this means 0 h f (£ 1).

(iii) If £ is empty and II = {A^j-.-.A^} the proof is dual to (ii) .

(iv) If TI' = E1 = 0 then for all A, B in L, A h B. Hence,

for all A, B in L, f-^A) h' fx(B). In particular for all

A ’, B' in L \  f1(f2(A')) H' f^f^B')). But A' h' f^f^A')) 

and f1(f2(B')) h 1 B'. Hence 0 h' 0 .

Fragments

We have defined a relation (strong similarity) on consequence 

relations which is clearly an equivalence relation. This notion 

appears to capture something of. what we have in mind when we say 

that two consequence relations are really the same. We would now 

like to give a similar analysis of what it means for one consequence 

relation to be a fragment of the other (in the sense that the 

partially classical consequence relation on the language with 

and 'a ' contains the partially classical consequence relation 

with only One natural account would be to say this relation

holds between f- and h 1 just in case there is an embedding of 

L/-I I- in • Let us adopt this account tentatively. We

will give evidence later that it is close to what we wanted.
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Definition 1.39. h. i§_ a fragment of t-' (written (- < I-') 

if there is a 1-1 function from L/-/ t- into such that

for all A, B in L, [A] < [B] iff f([A]) < ’ f([B]).

Two words of warning must be issued here. First, 1 ' and

' 1 are quite distinct. Suppose we form f-' by adding pairs

of sentences to h and closing under expansion and cut. It might

turn out that f- -< t-' . (This will happen, for example, if the 

sentences added are from a language disjoint from L.) On the 

other hand, it might turn out that b ' -< h . (This will happen, 

for example, if we add the pairs (A, OA) to When

logicians say that one logic is "stronger" than another, the rela

tion they usually have in mind is ' C ' rather than ' ■

Second, < does not have all the nice properties we might

expect from the shape of its name. It is a trivial fact that if

b ~  h ' then both t- h ' and h . The converse, however, is

false. Let = {(a,b) : a and b are rationals in the closed

interval [0,3] and a< b } and let R2 = {(a,b : a and

b are rationals in the open interval (0,3) and a < b}. Then

is isomorphic to R2t‘[l,2] and R2 is isomorphic to

R^U.B). But Rx and R2 are not themselves isomorphic, for
14one has a greatest element and the other does not.

Having issued these warnings, we can now continue with our

investigation of ' . As we saw in connection with similarity,

14An interesting example is that the classical and intuition- 
istic propositional consequence relations are (weak) fragments of 
each other, but are not (weakly) equivalent. See [Kleene 1950] p. 492.
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it is more convenient and more fruitful to deal with sentences 

than with their equivalence classes.

Lemma 1.15. /-< r' iff there is a function f : L -> L' such

that for all A, B in L, A h  B iff f(A) h ’ f(B).

Proof. First, suppose 1- <. f-1 . Let F be the embedding which 

shows this, and let f : L L 1 be any function which has the 

property that f(A) £ F([A]). Then it is easy to check that

A P B  iff f (A) f-' f (B) . Second, suppose f is a function with

the property mentioned. For all [A] in L/-K- let 

F([A]) = [f(A)]. It is easy to check that F is well defined,

F is 1-1, and [A] < [B] iff F([A]) <’ F([B]).

Definition 1.40. h is_ strongly a frament of h ' Oritten

h f-' ) if there is a function f : L -*■ L 1 such that, for all

T and A, r h A iff f (D I- f (A) .

From this definition we can see that, if L C L' and h is 

a consequence relation on L, then any one-one function f : L ->■ L' 

determines a consequence relation f-' which strongly contains h 

as a fragment. For we can let f-' = { (F 1 ,A '); either there is a 

(F,A)ef- such that f(F)Cr', f(4)CA' or F ' A A 1 ^ 0} .

It is easy to check that I-' is a consequence relation on L'

and that (- f-' . Let us call such a h ' the f-extension of h •

We promised earlier that we would produce evidence that our 

definition of 'fragment' is a plausible one. A more literal-minded 

account than ours would be to say that f- is a fragment of f-1
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if L C L' and J-1 = h ^ (2L x 2^). But we do not want our

account to depend on "accidental" matters, like language. For 

example we would like to think of the tense logic formulated

with 'G* and 'H' as primitive connectives as containing as a 

fragment the logic K with 'L' as a primitive connective, and 

even the logic K with 'L' and 'M' as primitive connectives.33 

A natural way to remove the language-dependence from the literal

minded approach is to use our earlier account of similarity. Let 

us say J- h' if there is a consequence relation f - 2 on

which is strongly similar to h and a consequence relation |-3
3 ion L which is strongly similar to j- such that

2 3 L2 ^2 *}- =1— <i(2 x 2 ). We define h h 1 in the same manner,

using similarity in place of strong similarity. We now show that 

this account captures the same notion of fragment as our previous 

account.

Lemma 1.16.

a) If b ' ~ h 2, r2K  h3, h3-x h4 then

b) If i-2 <̂ ( I-3, V-1* then

The proof is straightforward.

'M' is the connective such that for all A, MA -» H -L - A. 
Note that in our previous discussions of these logics we never re
vealed the shape of any connective except the Boolean ones. The 
others were referred to by special symbols of the metalanguage like

F'< t- .

h ’4 > 4.
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Theorem 1.8. (i) -< = <  ; (ii) .

Proof. We prove (ii). Suppose *-'<?<; h . Then for some 

\-2 , I-3 on L2, L3 \-2 = t-3 n 2 2 x 2 2 and

f-3^f-^- But then we can easily see that l-2^( I-3. (Just let

f be the identity function on L^.) So by the previous lemma,
4 »  4I-1 I- . Now suppose h 1 ̂  J- . Let f be the function which

shows this and let \-2 = n 2R x 2R where R is the range of f.

Let g : R •+ L^ be any function such that for all A in R,

f ((g (A)) = A. Then I-' ^ 3  \-2 . Furthermore, h** ^  , where

i is the identity function. Hence !-' << .

Translations

flf2In defining F ~  f-', we did not require the functions f^, 

f2 to satisfy any special conditions. But, when we use this defi

nition to prove two systems equivalent, the functions employed 

will usually be of a special, simple kind. We can use this fact to 

obtain some extra information.

So far everything we have said in this section applies to both 

predicate and propositional languages. In order to maintain this 

generality we will henceforth use the term 'atoms of L' to refer 

both to sentence letters of a propositional language and atomic 

sentences of a predicate language. We assume that we have at our 

disposal an enumeration (â , a2, ...) of the atoms of L.

Definition 1.41. An n-arv sentence schema of L is a sentence 0 

in L such that all the atoms which occur in O are among
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a^,...,a , i.e., they are among the first n atoms of L. An

n-ary sentence schema set of L is a set of n-ary sentence schemas; 

an n-ary theory schema of L is a pair (1,A) such that T- and 

A are n-ary sentence schema sets; and an n-ary theory schema

set of L is a set of n-ary theory schemas. A sentence schema

(sentence schema set, theory schema, theory schema set) is anything 

that is an n-ary sentence schema (n-ary sentence schema set, n-ary 

theory schema, n-ary theory schema set) for some n.

Definition 1.42. If a is an n-ary sentence schema (sentence

schema set, theory schema, theory schema set) then a(A ,...,A )1____ n_
is the result of replacing all occurrences of a^,...,a in 0 by 

Al’‘’‘,An resPectively• a(A1,...,An) is called an instance

of a .

It is convenient to keep in mind that sentence schemas are

just sentences of a special kind. If a is an n-ary sentence

schema of length 0, it must be an a^ for some i < n. If it

is of length > 1  it must be of the form Da,. . .a where each—  I n
is also an n-ary sentence schema.

Definition 1.43. A function t : L ->■ L' is called a translation

of L into L ' if, for every n-ary connective o of L there

is an n-ary sentence schema (tfl) of L' such that for all

A ,...,A in L, t ( n A . . . . A  ) = (t □) (t(A ),..., t(A )). If, in i n  i n  I n
addition, t restricted to the atoms of L is the identity function, 

then t is called a simple translation of L into L '.
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Lemma 1.17. If £ is a sentence schema (sentence schema set, 

theory schema, theory schema set) of L and t is a translation 

of L into L' then

a) t(e) is an n-ary sentence schema (sentence schema set, theory

schema, theory schema set). Call it (t£) .

b) For all A_,...,A in L, t(e(A ,...,A )) = (te) (t(A ) ,...,t(A )).I n I n 1 n
c) If t is simple, then for all A^.-.jA in L,

t(e(A1,...,A )) = (te)(A ,...,A ).I n  I n

Proof. a), b), c) can be proved simultaneously for e a

sentence schema by induction on the length of £. The other cases

follow immediately.

Lemma 1.18.

a) If h  is Montague and O is an n-ary sentence schema then

for all A,,...,A and B_,...,B , if A. -t f- B. forI n 1 n l l
1 < i < n, then a (A, ,. . ., A ) -I I- a (B , . .. ,B ) .—  — I n  I n

b) If, in addition, f- is finitary, then if T and A are 

n-ary sentence schema sets

¥ U r ( A .....A)  (■ A (A.....  A ) 1J 0 implies1 n 1 n
f U r ( B ,  B ) J- A (B , . . . ,B ) u QI n  I n

Proof. a) is proved by straightforward induction on the length

of a. To prove b) note that any finite subset of T(A^,...jÂ )

can be written {a,(A,,...,A ),..., a (A, ,...,A )} where each1 1  n m l  n
a. is in T. Hence we can apply a and cut a finite number of 

times to replace each o^(A^,...,A^) by (B^,... ,B^). Similarly,
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we can replace any finite set of sentences (A^,...,A^) in

A(A,,...,A ) by t .(B,,...,B ). A final application of expansion 1 n j 1 n
gives the desired result.

Definition 1.44. is_ equivalent to t-1 via t̂ , t̂

Clt2 tlC2(written |— =• f-) if h  h and t^ and t̂  are trans-

tlt'2lations. If h = t-' and t^, t2 are simple translations,

then h iŝ  simply equivalent to I-1 .

tlt2Lemma 1.19. If h = h ', then if f- is Montague, so is r .

V 2Proof. Suppose h = h' and h is Montague. Let □  be an

n-ary connective of L' and suppose A -Hi- B. for 1 <_ i _< n.

Then t ^ A j  H h c2('Bî  for 1 —  1 - n' Since 'r is Montague,
the lemma tells us that (t9 □) (t^CA^) , . . ., t^A^)) -41-

(t„a) (t„(B ) , .. . ,t (B )), i.e., that t,(DA ...A ) -i h2 2 1  2 n  2 i n
t„ ( DB . .. B ) . Hence tn (t„ ( □ A, . . .A )) -I h t (t ( DB . B )) .2 1 n  1 2 1 n  1 2 1 n
But since t^^CA)) -41-1 A for all A in L, this means

□ A. . . .A -4 h  O B  . . .B .I n  I n

To vindicate, at least in part, our earlier claim that our 

notion of equivalence would be a useful one we now show that a 

particularly simple kind of axiomatization of a consequence rela

tion can be obtained from a similar axiomatization of an equivalent 

consequence relation.
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Definition 1.45. A finitary n-place rule schema for L

(abbreviated nR.S. ) is a pair (£,t ) such that S is a finite

n-ary theory schema set in L whose members (the active hypotheses

of the rule schema) are all finite and T is a finite, n-ary theory

schema in L (the conclusion of the rule schema). If T. is a

set of theories in L, and F,A C L, we write T- + (F,A) for

{ (T U 7, 9 U A > : (f,0) 6 1}. If (E,i) is a finitary

n-place rule schema for L, then a set X is strongly closed under

(I,t) if for all A,,...,A in L, and all F C L, A C  L,  I n  —  —

£(A^,. . •,A )̂ + (T,A) C X  implies {T} + (T,A) C X. h is weakly

closed under (E,t ) if, for all A,,...,A in L,------------_ —  1 n
£(A^, . .. ,Â ) C b implies T S b .

Definition 1.46. A consequence relation b is simply axiomatized 

by A, R, R' if A is a set of finite theory schemas and R and

R' are sets of nR.S.'s such that h is the smallest set contain

ing all instances of members of A which is strongly closed under 

all members of R and weakly closed under all members of R'.

Lemma 1.20. If (- is simply axiomatized by A, R, R'

then h is finitary.

Proof. It is sufficient to show that if (£,t ) is finitary 

n-place rule schema and b is strongly (weakly) closed under 

(£,t ) then (£,t) preserves virtual finiteness with respect to I-. 

Suppose each member of E(A^,...,A^) + (T,A) is virtually finite
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with respect- to |- (where possibly T = A = <t>) . Then for all 

(T,0) in Z(A^,...,A^) there are finite or empty sets

r(T,0)-r and A(^0)-A SUCh thaC V U r(¥,0)  ̂0’ UA(T,0)
(where P  and 0' are subsets of *i, 0 respectively). If we

let r ' = U { r (VQ) : (¥.0) S e (A1>...,An)} and

A 1 = U {Aa;0) : (V.O) S  E(A1 ,...,An)} then we can apply expansion

to get T Ur' h 0 UA' for each (T ,0) in Z (Â  , . . . ,A^) . Since

Z is finite and all the members of Z are finite, both P  and

A 1 must be finite as well, f- is closed under (Z,x) so

{t (A,,...,A ) + (r' ,A')} ^ I- . Hence the sole member ofI n  —
{x(A^, . . ..Â ) + (r,A)} is virtually finite.

Theorem 1.9. If h is simply axiomatized by A, R, R' and 

tlt2h = h ’ then f-' is simply axiomatized by B, S, S' where

R (R').

To prove this we need the following lemma: 

tlt2Lemma 1.21. If h  =  h  , h and h are finitary and h is 

strongly (weakly) closed under the rule schema (Z,t), then 

is strongly (weakly) closed under t^((Z,t)).

Proof. Suppose the hypothesis of the lemma holds and
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schema (r,A) in Z, T U (t^D (A^,. . . , A^) (-1 (t̂ A) (A^,. . ., A^) U 0,

By Lemma 1.18b this implies 4* U (t^D (t^t^A^,. . . , t^^A^ h'

(t^A)(t^t^A^,...,t1t2An) U 0.16 By Lemma 1.17 this is the same as 

saying T U ^  (r ( t ^ ,  . . ., ̂ A^)) h ' t ^ A U ^ ,  .. .jt^)) U 0,

Hence t^ U t ^  (r (t9A]L, . . . , t ^ ) ) I- t, t^A (t ^ ,. .. , t ^ ) ) U t£ ) .

Since |- is finitary and t2C]_̂' ^ ôr a-*-l ^ L’ at

is clear we can apply a finite number of cuts to show that this

condition implies t^! U F(t?A^ t^A^) h A(t^i’...,^A^) U t20 .

But (r,A) is an arbitrary member of £. Hence

e(t2A1,. . .,t2An) + (t^, t20) C f- . Since t~ is closed under

(e,x), this means (x (t,^, . .. , t2An)} + (t^, t20) . Retracing

our steps we get { t^ (x (t^A^, . . ., t2A^)) } + (t^t^, t^t?0) £ I-'

which implies (t^T) (t^t2A^,. . ., t^t^X^) + (t^t^, t^t20) C

which implies (t^x)(A^,...,Â ) + (7,0) C /-' .

Proof of theorem. Let )-* be the consequence relation axiom

atized by B , S , S ' .

a) |_* C (- ', it suffices to show that i) (-' contains all instances

of B and ii) f-' is strongly (weakly) closed under S (S').

(i) By the definition of equivalence we know that for all 

schemes O, O -I h' t̂ t-jO . By Lemma 1.18b, 0 ( t ^ A p  .. . , t-^A^) -4 |i

tlt2Cr̂ tlC2Al’‘ ‘ ,tlt2An) for arbitrary A ^ . . . ^ .  By
Lemma 1.16b, this means a(A,j...,A ) -4 f-' t. t_a (A , .. . , A ).I n 1 I 1 n

"^Here and in what follows parentheses are omitted from expre
ssions of the form t^Ct^A)) and t(A) in order to make reading 
easier.
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It remains only to show that the translations of instances 

of A are in f-' . (F,A) in A implies F (t9 (A^ ,. .. , (A^)) i

A (t^(A^), . . . , (An)) for arbitrary A^,...,A^. So by Lemma 

1.17b, (tjT) (t1t2A1,. . ., t1t2An) h 1 (t^) (t1t2A1, . . . , t-Lt2An), 

and by Lemma 1.18a, (t^T)(A^.... A^) h 1 (t^A)(A^,...,A ).

I-' C h* .

Claim: (F,A) €= h implies t^(r,A) S h* •

Proof. If (F ,A) is an instance of some schema T in A ,

then t1(r,A) is an instance of the schema t^(F,A) in

t1 (A) . Now suppose (r,A) = (4* U 4* ’, 0 ’ U 0) where (T 1 ,0 1)

is an instance t (A.,...,A ) of the conclusion of a rule 1 n
(I,x) in R (R’) such that E(A,,...,A ) + (V,0) C .1 n —
(- (F(Aj , . . . ,Â ) Cl- ), and suppose that t^(E(A^,...,A^)) +

Lemma 1.18b,

ci V
But |-* is strongly (weakly) closed under (t^(E), tj(x)), so

(t^x) ( t ^ ....t ^ )  + (t^, ^0) 6 -* (t^) ( t ^ ,  . . ..t^) Gf*

Applying lemma again, t^Cx (Â , . . ., t^A^)) + t̂ (1',0) C

h* (t^(x(A^,...,A^)) £ |-*) . This proves the claim, b) now

follows easily. For T H ' A implies C2 ^ ’ so

by the above, t ^ C D  h* t-^CA). But h* is finitary and 

A -*|r-* holds for all formulas A, because (A^^t^A)

is an instance of some member of B. Hence T H'c A.

In the next lemma, the preceding theorem is strengthened by 

weakening the hypothesis that t^ and t2 be translations
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between L and L' .

Definition 1.47. If F C L, then F admits a_ r-normal form 

if, with each A in L we can associate a sentence B G T such

that A -It- B. We call such a B the f-normal form of A and

denote it by T  (A) ' . If 0 C L we write T  (9) ' for 

'{T(A) : AS©}'.

Lemma 1.28. Suppose the following hold:

1) h, h and are finitary consequence relations.

+ - + A A2) h admits a A-normal form and h  = h H 2' x 2 .

3) h is simply axiomatized by (A,R ,R1) and h  by 

(B,S,S ') •

«  ^ \ V .

Then h' is simply axiomatized by (C,T,T') where 

C = tx(A) u B U  { ( {a} ,{t} ) : a = t ^ T  or x = t - ^ a } ,

= t1( R ) U S ,  T' = t1 (R,) U S '  and T = t(R) U S.

(Notice that when h = Lemma 1.28 is the same as Theorem 1.9.)

Proof. By the previous lemma we know that h , and hence /-+ , 

contains all instances of t^(A) U  B. Not suppose 'f f-+0. Since 

h + is finitary and since it admits a A-normal form,

A(T) f-+ A(0). Hence A ('f) (- A (0) . By the previous theorem there 

is a ’derivation' of this from t^(A) using t^(R) and t^(R').

By applying B, S and S' we can them 'derive' 'i1 h ' 0.
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We are now ready to introduce the notion of definability and 

to show how it is related to equivalence.

Definition 1.47. If O  is an n-ary connective in L and O

is an n-ary sentence-schema in L which does not contain any

occurrence of □  , then □ jls definable by a _in_ h if, for

all sentences A,,..., A not containing □, DA, . . .A -t (- a (A,,...,A ).I n 6 I n  1’ ’ n

Definition 1.48. Let D  = ( jTj, ||j, . . .) be a (possibly infinite)

sequence of symbols not in L, and let O = (0^,0^,...) be a

sequence of sentence schemes in L of the same length as □.

Then the (□/ 0 ) definitional extension of H (written

(- + (D/a)) is the smallest Montague consequence relation, H 1 ,

on the language L' obtained by adding the [T/'s to the connectives

of L, such that f- S  t' and each [iJ is definable by

in (-'.

Lemma 1.22. Let TUI, a, L, L’ be as above and let t be the 

function from L' to L such that t(p) = p for all sentence 

letters p, t(DA^...An) = Dt (A^). . . t (Â ) for all n-a ry connectives 

LJ of L and t ( [Tj A^.. . A^) = 0 ^  t (Â ) ,. . ., t (Â ) for all 

n-ary connectives {Tj in L' - L. Then if h is finitary, 

b + (P/a) = { <T,A > : t(F) )- t (A)} .

Proof. Let |-' be the set on the right. It will be convenient

to identify fdp^.-.p^ with □. We prove first that j-' has the

right properties.
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(i) A £ T '_l 4 implies t(A) £ t(D H t(A) implies t(T) h t(A).

(ii) If F f' A and T,0£L', then t(F) h t(A) and t (¥) ,

t(0) C L. Hence t(F U T) h t(A U 0) so F.T h' A,0 .

(iii) If T h' A,A and T,A I-1 0, then t(F) j- t(A), t(A) and

t (A) , t(T) f- 0. Therefore, t(F U y) (- t(A U 0) so F.'F |-' A,0.

(iv) Suppose ^ Bi for 1 < i < n. Then t(Aj -I h t(Bi>

for 1 <_i < n. Hence, by Lemma 1.18a, (to ) (tÂ , . . . , tÂ )

-I H (tD) (tB^ . . .,tBn) , i.e., t(OA . . .A ) -i b t( OB . . .B ).

Therefore QA....A -H F OB . . .B .I n  I n

(v) If F h A , then, since t(F) = T and t(A) = A,

t(D I- t(A). Hence T r' A.

(vi) Suppose A^,...,An are in L. Then t( [Tj A^...A^) =

O .(tA.,...,tA ) = a(A.,...,A ). Since a.(A,,...,A )i 1 n I n i 1 n

t (fil At .. . A ) ~l h t (a . (A ,. . ., A )) and so 1— ' I n  l 1 n
III At .. .A M H a. (A , . . . ,A ) .^  1 n r 1 n

(i) - (iii) show that (-' is a consequence relation. (iv) shows

that it is Montague. (v) shows that it contains h and (vi) shows 

that it contains the necessary definitions. Clearly f-' is finitary. 

It remains only to show that there is no smaller relation meeting 

these conditions. So suppose there is; say (- .

Claim: t (A) I- A .

We prove this by induction on the length of A. If A = p for

some sentence letter p then t(A) = A so the claim holds for any
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consequence relation f- . If A = DA^...A^ then by induction

hypothesis, A. HI- t(A.) for 1 i _< n. Since h is Montague,

A HI-' Ot (Â ) . . . t (Â ) . If □ is a connective of L then

t(A) = CJt(A,)...t(A ) and we're done. If □  = 0  , then since1 n
each t(A.) is in L we know Dt (A )...t(A ) H(-‘ x I n
a . (t ( A , t  (A )). Applving cut we get A -Hi— a . (t (A ),..., t (A )) l i n i X n
i.e., A H  I—  t(A). This proves the claim.

Now suppose T h ' A . Then t(F) h t(A). Since h is

finitary, there are finite or empty sets F' C F, A' C A such

that t(r’) h t(A1). Since h C h~, t(F') h t(A’). But by the

claim tA -J f— A for all A in T 1 ,A' . Applying a finite number

of cuts we get F ’ J- A'. Expanding, F h A . Thus f-' C j- and 

the lemma is proved.

Theorem 1.10. If □, a, L, L' and t are as above and

I-, are finitary, = j- + (a/□) iff (-=(-' where i

is the identity function on L.

Proof. (a) Suppose (-' = F + (o/□) . We show that |- =  h  ’ .

(i) Since (- C (-', F r A clearly implies i(D h' i(A).

(ii) r (-' A implies (by the previous lemma) t(T) h t(A).

(iii) If A is in L, t(i(A)) = t (A) = A so t(i(A) -I (- A.

(iv) If C is in L', i(t(C)) = t(C) . Claim: t(C) -k h' C .

Proof: By the previous lemma it is sufficient to show

t (t (C)) HI- t(C). But t(C) is in L so t(t(C)) = 

t(C) which proves the claim.
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(b) Suppose h ^  H1.

(i) F i-' A implies t(F) h t (A).

(ii) t(T) h t(A) implies i(t(D h ' i (t (A)) , i.e., t(D r 1 t(A).

But since h =? f- ', i (t(C)) -I t-‘C for all C in L'.

Since I-' is finitary and i (t (C)) = C this implies that 

T f-' A . By Lemma 1.22, (i) and (ii) are sufficient to 

prove that h ’ = j- + (a / □) .

In what follows we assume that C is the set of all connectives

of L, that C1 is the set of all connectives of L' and that 

C and C' are disjoint. Since we can always rename the connectives 

of a language, this is no real restriction.

Theorem 1.11. If J-' are finitary and substitution-closed,

then <- is simply equivalent to (-' iff r- and h ' have a common 

definitional extension.

Proof. The "if" part is a corollary of Theorem 1.10. The "only

if" part is proved as follows. Let t̂ , be the sentence-letter

preserving translations which make b and (-' simply equivalent.

Let □ = (jTj , jTj , . . . ) be an enumeration of all connectives in C' 

and let O  = ((l) , © , . . .  ) be an enumeration of all connectives

in C. Let 0 = ((t2 jTj), (12. (TO, . - . ) and

T = ((t^ ©) , (t^ (2)), ...). (The notation 't(D)' is used as it

was in Lemma 1.22.) Now we define translations t^, t2 from

the language (S, C U C 1) into (S, C U C'). For all sentence

letters p, let t^(p) = t^(p) = p. If O  is an n-ary connective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-90-

in C1 let (t*D) = U p 1-..pn and let (t2D) = (t2 □) . If O  is

an n-ary connective in C then let t^(O) = (t^O) and let 

t*(0) = O p 1-..p • Finally, let |-* = {(T ,A) : t ^ O  h t"(A)} .

We shall show that

H*' = h + (□ /o) and h' = h ' + (a/ t) .

The first equation follows directly from Lemma 1.22. To prove the

second we must show f- = { (F ,A) : t^(F) h ' t^(A)} i.e., that

t*(D h' t*(A) iff t*(D h t * (A) .

* * tlt2Suppose first that t^(F) (-' C^(A). Since f- =  h  ,

t2tl^^ Since (- is finitary there are A^,...,Am

in F and B_,...,B in A such that t_t,A,,...,t_t,A h1 n 2 1 1  2 1 m

C2tlBl’ ’ ' ’ ’ t2tl3n* T° prove t2^^> then> we need only
establish the following.

Claim: For all A, t,,t̂ (A) -I h t"A . This is proved by induction

on the length of A.

If A = p for some sentence letter p, then

t2t^(A) = t2(;t?t (A) = t„(p) = p = t (A).

If A = GAn . . .A for □  in C' then 1 n

C2tlA = (t21̂  ̂ t2tlAi’-‘ >t2tlAn̂  and
t~A = (t„d) (t_A , . . . , t A ) .

so Lemma 1.18a tells us that t„t A H y- t A.
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(tlO)(tlAl,',,’tlAn) S°

*-2 ((t1 o) (tiA1>...

(t2 (t1 0 ) )  (t2 C^Ai ,. . ., C2 t'1An ) •

But (t2(t1(0))) = t2t  ̂ ^Pl''‘Pn (since ti’t2 are simPle)

same manner.

In this section we have up to now taken consequence relations 

as objects which are simply given. No mention has been made of 

classes of models which give rise to these relations. But if 

such classes are known, it is usually much simpler to deal with 

the models than with the consequence relations themselves. We 

show how this may be done below.

Lemma 1.23. Let M  and }■]' be classes of models suitable for

L and L', respectively; let g^ and g? be functions from M  

into M' and M' into M, respectively; and let f^ and f2 

be functions from L into L' and L' into L, respectively, 

such that, for all M and M' in M  and M' respectively, and

all A and C in L and L 1, respectively,

-11- O P x. • -Pn - Substituting t^^A,^ for p^ we get 

t2tl ^  O  ̂ t2tiA]_ > * * * > C2tlAn̂  ‘ Applying induction hypo
thesis, t2t^(A) ~i I- 0( t^A^, . .. , t'̂ Â ) , i.e., t2t*A I (• A.

This proves the claim, and therefore that t^(F) f-1 t^(A) 

implies t2(D (- t2(A). The other direction is proved in the
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(i) M b A iff gx(M) |= fx(A) .

(ii) M' *= C iff g2(M') b f2(C).

(iii) M 1= A iff M b f^CA) •

f lf2
Then %  ^  • >  •

Proof.

(a) Suppose T A.

Let M' be a member of M' such that M' f  f^(D, i.e.,

such that M' f  f^(A) for all A in P. Then for all A 

in P, g2(M') f= f2fiA. Hence by (iii) above, g2(M') != r.

But g2(M') £ M  so there is some B in A such that

g2 (M') b B. Applying (iii) again, g2(M') f=

Therefore by (ii) M' h f^(B) . This shows f^(D b^n f^(A).

(b) Suppose T A and M is a member of M  such that

M (= f2(P). Then g^M) b f]_f2r > and, therefore g2g-L>I f=

f2fif2r. In other words, for all A in T, g-̂ g-jM b 

f2fxf2A. By (iii) f2fxf2A j*bM £2A, so 

g2g1M |= f2r .  By (ii) g-^M) b T. Since T K^, A this 

means that there is a B in A such that g-̂ (M) b B. By 

(ii) again, g2g1(M) j= f2B and by (iii), g^tM) 1= ^ f ^ B .  

By (ii), g (M) b £ £2B and by (i) , M (= f  2B. This shows

f2(r) b M , f2(A)•

(c) By (iii), A =]bM  f 2 f x (A) .

(d) Suppose M is in M' and M b  A. Then g2(M) b g^k. So
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Corollary. If (i) and (ii) of the lemma hold and for all A in 
flf2L, g2g1(M) = M, then K ; ^  F//t .

Lemma 1.24. Let L' be the language obtained by adding a set

C = {(Tj, [2J , ... } of new connectives to the connectives of L.

For each i such that (Tj is in C, let a. be a schema of

L. Let 14' be a class of models suitable for L1 and for all

M' in 14' let f2(M') be the model for L obtained by deleting 

from M' the coordinates which interpret the connectives in C. 

Suppose that, for any n-ary connective (T] in L, any M' in 

M ' , any sentences A^,...,An in L, and any w in W,

(M1 ,w) j= JTj A^. . . A^ iff (f2(M'),w) f= ai(A1, . . . ,Â ) . Then

k „  = K. + (D/a) where 14 = {f„(H') : M 1 £//'} .M Ii

Proof. To simplify notation we assume that C = {jj]} and 

that Q  is the only connective of L. By Theorem 1.8 it is 

sufficient to show ^  (=̂ , (where i and t are the trans

lations defined in the statement of that theorem). We can show 

this by Lemma 1.21. Let f̂  be a function from U  to 14’ such

that for all M = (W, o, 0,V) in 14, f^(M) = (W, o, □, HI , V)

for some relation □. (So f9(f^(M)) = M)

(i) For all B in L', all M' in M' and all w in W^, ,

(f2(M1) ,w) t= t(B) iff (M' ,w) 1= B. This is easily proved 

by induction on the length of B. There are three cases:
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B = p, B = Uj B, . . .B , and B = . In the firstA ’ 1 n I n
case the proof is immediate. In the second case we must 

use the hypothesis of the lemma. Finally, the third case

must be divided into two subcases according to whether the

interpretation of □  in M' is a point-to-point or a 

neighborhood relation. In either subcase the result follows 

from the induction hypothesis and the fact that □  has 

the same interpretation in M' as it does in M.

(ii) For all A in L, M t= A iff f^M) != i(A) . This is

clearly true since Q] cannot occur in A and M and 

f^(M) are identical except for the interpretation of Q] .

(iii) For all M' in M ' , M' t= A iff M' t= i(t(A)). Since

i (t (A)) = t (A) we need to show M' 1= A - iff M ' t= t(A).

By (ii) M ! N A iff f^(M’) f= A, and by (i) f^(M’) f= A

iff f 2 (f ̂ CM1)) f= t (A) . But f 2 (f ̂ (M1)) = M 1 so this is the

desired result.

To complete this chapter we present one final theorem. The 

proof of this theorem illustrates some of the ideas presented in 

this section and the result itself is of some interest. It was

first proved by Kit Fine."^

"^The proof was communicated to the author orally. It 
has apparently never been written up.
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Theorem 1.12. Every classical Montague consequence relation (-

is a fragment of some classical normal-Kripke consequence relation h 1.

Proof. For notational convenience we assume that L has only

the single connective CD, which is n-ary. By Theorem 1.5, we know

that »- is strongly complete for some normal class M  of models.

Furthermore, from the proof of this theorem we can see that all of

these models have the same set of points . Let M = (W, o, □, V)

be a model in M. If □  is a point-to-point relation we can replace

it by 5  {(u,V) : u Q v = > v E V }  without changing the

truth value of any sentence in M. Thus it is safe to assume that

in each model in M, □  is. interpreted by a neighborhood relation.

Similarly, if Ŵ_ is finite we can pick a point w q from and

add as many copies of w to Ŵ _ as we like. More precisely, if

wq is in W and A is a set disjoint from V.̂  then let

M  + w (A) be the set of all models (W1, o', □ ', V') such thato
for some (W, o, □, V) in M, W  = W U A, o' € W',

£"]' = { (u,v) : u □  v, or w □  v and u E A, or u □  w q and'

v E A } ,  and V f(p) = V(p) if w gV(p), V ' ( p ) = V ( p ) U A

otherwise. Clearly, M  + wq(A) is normal and (=w+w ^  •
o

Hence we can assume that the set of points of the models of M  is 

infinite.

Let L+ be the language obtained by adding to the connectives

of L the new unary connectives O  , QJ, ..., (nj, 0 ,  ..., © .

Let L' be the language obtained by removing from the connectives 

of L+ the original connective D  of L. Now for each model

M = (W, o, O, V) of □  we construct a model
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M+ = (W, o, O, [T] , .. . , [ry , 0  , ...,©, □  , V) suitable for
+ 1 2  L as follows. Let S ,S , ... be an enumeration of all n-tuples

of sentences in L and let U = {u^jU^,...} be a countable

subset of W. For 1 < j < n let jjj be the relation which

holds between u and v iff there is some i such that u = u.l
and v is a member of l^lM where A is the j1th member of

the n-tuple S1. If are subsets of W, we say u

codes (V , . . .,V ) if, for all x in W, x is in V. iff ------- I n  J
u [Jj x. Clearly each u codes a unique n-tuple and each u^

codes (I (S1), L, . . ., I (S1) I,). Let u Q v  iff there is some ' I'M ' n 1M
n-tuple A,,...,A of sentences of L such that (M,u) FDA,... A I n  . I n
and v codes (I A,I IA I ). Finally, for 1 < j < n, let'I'M’ 1 n1M — —
u (j) v iff it is not the case that u Qj v. This completes 

the definition of M+ .

Let M +  = {M+ : M G m ) and, for all M+ in M + let

f̂ CM"4") be the model obtained by deleting the penultimate co

ordinate, □  , from M+ . Let o = - 0 -  ( 111 p^ A . . . rf\[nj p^A ©  - p^ A

... A ©  - pn).

Claim: For all A, A in L', all M+ in M + and all  1’ n
points w of M+ , (M+ ,w) 1= QA^.-.A^ iff (f7(M+),w) f= a(A^,. . . ,An) .

Proof. Let f2(M+) = M' . (M',w) f= a(A^,...jÂ ) iff 3v such

that for some sentences B ,...,B of L, (M,w) 1= lIB . . .B ,I n  I n
v codes  ̂I B11 * • • > I Bn I and (M'>v) |= |7] ̂  A . . . .A lrTj A^ A

© -A^ A ... A (riJ-Â . This last clause just says that for all 

points u of M', v [J] u implies (M',u) |= Â. , and not

v []] u implies (M1 ,u) A_. . In other words it says that v
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codes (|A | .....   |A | ,) . This means that for 1 _< j £ n  we

must have IAjIm ' = 1Bj iM * PuttinS a11 this together,

(M',w) F c(A^,...,A^) iff there are sentences B^,...,Bn of L

such that (M,w) )= OB ...B and B. = Ia . I , for 1 < i < n.1 n i M ' i 1M — —
Since each A. contains no occurrences of D, it is clear that

|A. L, = Ia. L, . Therefore (M',w) h o(A,,...,A ) iff l M i M 1 n
(M,w) J= □A1...An . This proves the claim. By Lemma 1.22, the

claim shows that f=^ = }=̂ t + (.O/a) • By Theorem 1.4,

f=̂fl is normal-Kripke and by Theorem 1.8 it is equivalent to

K., + (O/a). The theorem will follow if we can show that 
M

f=̂ _ H (2L x t )  = f=̂  . But if A is in L, then A contains

no occurrences of any connective but □, so for all M in M,

M h  A iff M+ L A. Since i t f= {M+ : M e M } the required 

equation clearly holds.

Remarks on the literature

Much of what was included in Part I is standard material 

either in elementary logic texts or in standard works on modal 

l o g i c , b u t  it may be worth pointing out a few things which are 

not. The material on consequence relations is mostly taken from 

[Gabbay, 1974], [Scott, 1971], and [Scott, 1975]. The completeness 

theorem is more general than those given in the literature in two 

respects. First, the language may have any number of non-classical

1 8e.g., [Hughes, Cresswell 1968], [Segerberg 1971], [Gabbay, f].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-98-

connectives. This is possible because the properties of being 

Kripke, S4, etc., are ascribed to connectives rather than logics. 

Second, no assumption that there is an underlying classical logic 

is made. This is possible because the properties of being Kripke, 

S4, etc., are defined in terms of consequence relations alone.

(Most of the definitions are adaptations of the Genteen-style rules 

given in [Ohnishi, Matsumoto 1961].) All of this is a natural 

extension of the approach in [Gabbay 1974 ]. It is worth noting 

that completeness theorems for fragments of the standard modal 

logics follow immediately from our general completeness theorem. 

These have been obtained previously by more tedious methods.

(See, for example, [Scharle 1975].) The section on equivalence, 

translation, and definability is based on [Kotas, Pieczkowski 1970] 

and [Kanger 1968]. Here again, use of the consequence relation 

makes it possible for us to say a great deal without the usual 

presuppositions about the language. After this chapter was mostly 

written I learned of Kit Fine's unpublished work on the same 

subject. Fine's notion of equivalence is basically the same as 

that given here, but his notation is simpler in that a single 

binary relation S C ('synonomy') does the work of our

functions f^ : L ->■ and f  ̂ '• ^
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CHAPTER II

THE MANY-SORTED FRAMEWORKS

A. Introduction

In Chapter I we said that a predicate language contained a 

single stock of individual variables. Each variable could be 

interpreted as any member of the domain of individuals of a 

structure. For some purposes, however, it turns out to be more 

convenient to view the world as containing several different 

kinds of individuals, and to include in the language several 

different kinds of variables, each of which can be interpreted as 

only one kind of individual. Systems like these have been called 

many-sorted. They arise naturally in connection with reasoning 

in certain parts of mathematics. A language in which facts of 

geometry can be represented, for example, might include different 

sets of variables for points, lines and planes. Similarly, in 

the case of linear algebra, different variables for vectors and 

scalars would be appropriate. It is always possible to reduce these 

many-sorted frameworks to single-sorted ones by combining the 

domains of a many-sorted structure and introducing into the language 

new unary predicate letters whoe interpretations are just the old 

domains.^ But many-sorted structures are more natural than their

1See [Wang 1952].
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one-sorted counterparts and many-sorted sentences are more trans

parent. For we think of geometry and linear algebra as being about 

several different kinds of objects, not as being about one kind 

of object which may have one of several properties.

The theme of the next three chapters will be that modal 

propositional frameworks, like classical predicate frameworks, are 

often best viewed as 'many-sorted1. Just as variables of different 

sorts are introduced to range over different kinds of individuals, 

so sentence letters of different sorts will be introduced to range 

over different kinds of sentences. There are at least two circum

stances under which we shall find it appropriate to distinguish 

among different kinds of sentences. The first is the case in which 

our framework is intended to deal with sentences whose truth in a 

situation depends on different features of the situation. For example, 

if we wish to represent sentences beginning "It will always be the 

case that,..." as well as sentences beginning "As far as the eye can 

see it is the case..." it would be natural to include one kind of 

sentence letter to be evaluated at times and a second to be evaluated 

at places.

The second case involves sentences whose truth depends in 

different ways on the same features of the situation. The natural 

way to insure that these differences are captured is to place 

different kinds of restrictions on the interpretations of different 

sentence letters. In Chapter III, for example, we consider a frame

work in which the truth of certain sentences depends on what interval 

of time is associated with them. Some of these sentences (e.g.,
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"John swims in the Channel") have the property that their being true 

when associated with one interval entails their being true when 

associated with any subinterval of that interval. Others (e.g.,

"John swims across the Channel") have the property that their being 

true when associated with an interval entails their being false at 

any subinterval of that interval. Clearly the sentence letters 

which are to represent these sentences must be divided into two 

groups, and we must place different restrictions on the inter

pretation of each.

In the remainder of this chapter we consider only sorts corres

ponding to dependence on different features of the situation. The 

treatment of sorts corresponding to different kinds of dependence 

on the same features in unproblematic, and will be illustrated in 

later chapters. In sections B, C, and D of this chapter we shall 

introduce the notion of a many-sorted framework and argue for its 

usefulness. Our initial formulation is suggested by the standard form

ulation of many-sorted predicate logic, but we shall show that there 

is a more convenient formulation which will do just as well. In 

section E we prove some general completeness theorems for many- 

sorted frameworks. In section F we present a reduction to one- 

sorted frameworks analagous to the reduction of many-sorted classical 

predicate systems. In section G we consider the possibility of intro

ducing sort restrictions to block iterations of the necessity operator 

in S5. The next two chapters deal with more serious applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-102-

B. Languages

Definition 2.1. If Q is a set, then a Q-sorted language is a

pair L = (S,C) where S is a pairwise disjoint collection of 

countable or empty sets indexed by Q and C is a pairwise dis

joint collection of sets indexed by some set of partial functions 

from finite or empty sequences of members of Q to members of Q. 

These functions are called types. A type t defined only on the 

empty sequence ( ) is identified with t( < > ). Ve

call the members of Q the sorts of L; the members of each Ŝ.

in S, the sort-j sentence letters of L̂; and the members of each

Cr in C, the type-r connectives of L. In practice we usually

take the sorts to be either natural numbers of sets of natural 

numbers and we always take the types to include in their domains of 

definition only sequences of the same length. If □  is a type-r 

connective and the domain of r contains only n-tuples then we 

say □  is n-ary.

Definition 2.2. If L = (S,C) is a Q-sorted language, then we

define what it means for a finite sequence A to be a sort-j 

sentence of L_ by induction on the length of the sequence A.

• If A is of length 1 then A is a sort-j sentence of L

iff either A = (p) where j £ Q and p. £ S_. or A = (□) where 

□  SC. and j £ Q.

• If A is of length n+1 then A is a sort-j sentence of L 

iff j £ q and A = (□, A^,...,An) where □  is a type-r
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connective of L, and for some (not necessarily distinct) 

jl>**.>jn in A i ’'-'’An are sentences of sort

respectively, and r(j^,. . . jĵ ) = j.

A sentence of L is a sort-j sentence of L for some j in Q. We 

follow the same conventions in writing sentences of many-sorted 

languages as we did in writing sentences of one-sorted languages.

It is clear that no sentence is a sentence of more than one sort.

We can therefore write s(A) for the unique j in Q such that

A is a sentence of sort j. Also, if K C L, we write for

the set of sort-j sentences of K.

Notice that an n-ary connective followed by n sentences is 

not always a sentence. Suppose, for example, that L = (S,C) is 

a {l,2}-sorted language, and □  is a unary connective of type 

r = {((1),2)} . Then there can be no sentences of the form

C J O A  in L. For any sentence of the form DA must be of sort- 

2 and connectives of type r cannot be applied to sort-2 sent

ences. The fact that connectives of a many-sorted language cannot 

always be iterated is noteworthy. The lack of a suitable inter

pretation for iterated connectives has often proved embarassing to 

philosophers whose systems seem otherwise to be faithful formaliza

tions of philosophical concepts. In fact the existence of these 

difficulties is one sign that sort distinctions may be needed. For 

if a modal connective can be sensibly applied only once to a sent

ence, then there must be some difference between sentences with that 

connective and sentences without it.
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Henceforth we assume Chat L = (S,C) is a Q-sorted language.

C. Models —  first formulation

The account of many-sorted propositional languages given above 

is not unlike the standard account of many-sorted predicate languages. 

Their interpretation, however, requires a little more thought. Per

haps the most natural way to proceed (since it preserves the analogy 

with the standard predicate case) is the following.

Definition 2.3a. A model suitable for _L is a 4-tuple 

(W, o, C, V) satisfying the following:

(1) W is a pairwise disjoint collection of non-empty sets indexed 

by the members of Q.

(2) o is a choice set for W, i.e., a set containing exactly

one member from each W. in W.
J

(3) C is a set such that for each type-r connective □  of L

and each j = (j , . .., j ) in the domain of r, C contains
_ J n _ ... W . Wj

a relation □( j) such that either □( j) C x 2  ̂* ... * 2 n

or T =  (jx) and D(j) E wr (̂ ) x •

(4) V is a function such that, for every j in Q , if pJ is

a sentence letter of sort-j then V(pJ) C VJ. .
-  J

The members of each are called j-points. The j-point in o is

the designated j-point. o itself is the designated set. Intuiti

vely, each j-point represents that feature of a situation on which
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the truth of a sort-j sentence depends. The designated j-point 

represents the appropriate feature of the situation which actually 

obtains.

We can now define truth of a_ sort-j sentence at a_ j-point 

in much the same way as we defined truth of an ordinary sentence 

at a point.

Definition 2.4. If M = (W, o, C, V) is a model for L,

w. £ W. £ W and is in I/1 then (M,w^) = A"1 iff one of the
J 1 ----------
following holds:

(1) AJ is a sentence letter and wJ £ V(AJ).

(2) A"1 is a o-ary connective □  and w^ £ □( { ) ) .
W . W .

(3) A^ = O A 1 . . .A , D(T) C w . x 2 J l x ... x 2 Jn where1 n J
j. = s(A.) for 1 i £ n and s(IJA^...A^) = j, and finally

5(J> w, |A l lK ----- .|An [M - C|b |n  - {u £ Ws(B) : (H.u) I- B ).)

(4) A^ = B, □(j*) C W. x w. where j1 = s(B) and s(DB) = jJ J x
and, for all u in W. , (w,U) GQ(j) implies (M,u) f= B.

J1
Truth of a j-sentence in a model is just truth at the designated

j-point, i.e., M 1= Â  iff there is a ŵ. such that

w. £ o H w. and (M,w) h A^ .
3 3

If M  is a class of models suitable for L then we can define 

validity and consistency of a set T C L relative to I-i in terms of

the truth of sentences of T in models of M  exactly as before.

(This is true even if T contains mixed sorts.)
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In Chapter I we argued that if logical truth and logical con

sequences are to be determined by a class of models, this class of 

models should be normal, i.e., it should be closed under the operation 

of changing the designated point of a model. This is no longer the 

case. For it may turn out that different features of a situation are 

dependent on one another, so that, say, the j 'th feature of the 

situation's being as represented by w^ precludes the possibility 

of the k 'th feature's being as represented by w^. For example, 

suppose the truth of j-sentences depends only on the temperature 

inside a certain container of gas and the truth of k-sentences 

depends only on the pressure on the walls of this container.

(Plausible candidates for j and k sentences might be "An accu

rate thermometer would read 70°F," and "An accurate pressure gauge 
2would read 70 lbs/in .") We would not want to say that a mixed 

set T of j-sentences and k-sentences was consistent just because 

there was some temperature at which all the j-sentences were true 

and some pressure at which all the k-sentences were true; for it 

might be that this temperature and pressure cannot simultaneously 

obtain in the container.

The choice of example here may seem unfortunate since it 

leaves the escape route of distinguishing between logical consistency 

and "physical consistency". We shall later come across examples 

where the connections among the sorts are clearly logical. (One 

such is obtained by making j-sentences temperature-and-pressure 

dependent and k-sentences merely temperature dependent.) In
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general, though, we wish to leave the question of what connections 

among sorts are "logical" to be determined by the framework. There

fore we proceed as follows. For every model we single out a class 

of compatible choice sets. (To call a choice set "compatible" 

indicates that all the features represented could obtain simul

taneously in some situation.) We then insist that the designated 

set be a compatible choice set. Finally, for the same reason we 

restricted our attention to normal classes of models in Chapter I, 

it is now reasonable to restrict our attention to classes of models 

closed under the operation of changing the designated point from 

one compatible choice set to another. Since each j-point is 

intended to represent a feature of at least one situation, this 

restriction implies that the classes of models we consider have the 

following property. If M = (W, o, C, V) is in M  and w^ is 

a j-point of M then there will be at least one model (W, w, C, V)

such that w. £ w. For want of a better name such classes will be J
called semi-normal.

D. Models —  second formulation

The account of many-sorted models sketched in the preceding

section is different enough from our earlier account of ordinary

modal models to make the application of the results and techniques

of Chapter I a little difficult. In this section we give an alter

native account by which the many-sorted model is seen to be a special 

kind of ordinary modal model. The idea is that instead of starting 

with different j-points and then singling out certain sets of these
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as compatible, we start with points corresponding to compatible 

choice sets and let equivalence classes of these objects do the 

work of j-points. Since all of the points represent compatible 

choice sets we can reasonably require classes of models to be 

normal. The details are presented below.

Definition 2.3b. A model suitable for L is a 5-tuple,

M = (W, E, o, C, V) such that

1) W is a non-empty set (the points of M).

2) E is a collection of equivalence relations indexed by the

members of Q. If w £ W, S C W, and j £ 0, we write

[w]^ for {u £ W; u Ê  w} and S/j for {[u ] _. : u £ S}.

3) o 6 W (o is the designated point of M).

4) V is a function from sentence letters of L to subsets of

W such that if pJ is a sort-j sentence letter and u E. v3
then u S V (p^) iff v ^V(p^).

5) C contains a neighborhood or point-to-point relation

□(j) on W for each type r connective □ and each j in 

the domain of r such that the following hold. If is

type-r, r((j^)) = j^ and d((j^)) is point-to-point then 

u Ej u' and v Ej v' implies that uD((j^)) v iff

u' D((j^)) v'. If □  is type-r and r(j) = j^ where 

j = (j^,. . ., j^) , then if u E_. u' and for 1 <_ i n,

S'/j. = S/j then D(j) u, Sl5...,Sn iff D(j) u', S|,...,Sh
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Definitions of truth at a point, truth in a model, and 

validity, consistency, and consequence with respect to a class of 

models can be given in exactly the same way as in Chapter I. (The 

new coordinate E plays no role here.) Points are now regarded 

as situations (as they were in Part I) and the equivalence relations 

E_. can be thought of as holding between pairs of situations which 

agree on their j'th feature. The restrictions placed on the inter

pretation of sentence letters and connectives guarantee that the 

truth of a j-sentence depends only on the j'th feature. More 

precisely, a simple induction will establish the following result.

Lemma 2.1. If M = (W, E, o, C, V) is a model, then if A is

of sort-j and w E. w ' then (M,w) F A iff (M,w') h A.1

It is not surprising that the models of this section are not 

essentially different from those of the preceding one. We make 

this precise in the next few pages. To avoid confusion we refer to 

the models introduced in this section as 'D-models' and those of 

the preceding section as 'C-models'. In subsequent sections this 

terminology will be dropped and the term 'model' will always refer 

to D-models.

Lemma 2.2. For every semi-normal collection M  of C-models,

there is a normal collection M' of D-models such that = t=̂ , .

Before proving this it is convenient to introduce some 

notation.
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Definitlon 2.5. Let M = (W, o, C, V) be a C-model suitable 

for L, and let j be a sort of L. If w is a choice set of 

W, then the j-part of w (written wJ) is the unique member of

w f~l W.. If S is a family of choice sets of W then the j-part of

S (written ) is the set of all w*' such that w is a member

of S.

Proof of Lemma. Let M = (W, o, C, V) be a C-model in 11,

where W = {w_. : j G Q}, o = (w^ : j e 0}, C = {Cl(j) : □  is a

tvpe-r connective of L and J is in the domain of r}. Now

let W  be the set of all choice sets w of W such that

(VJ, w, C, V) is in 11. For all j in Q, let

E. = { (u, v) G w' x w' : û  = }. Let E = { E .  : j € Q }.
.1 J

For all type-r connectives and all j = (j^>-*-»jn) in the domain of

r we define a relation G(j) from Q(j) as follows. If
W. =

□  (1) C w x 2 1 x • • • x 2 n » then = { (w, S , . . . ,S ) :— r(j) _ I n
A  S^l, . S^n ) k  0(5) } . If D(j) ^ wr(^ } x then

D(j) = {(u,v) : (ur(j), vJl) GD(j) }. Let C' = {GO) : D(t) G c} .

Finally, let o' = o and let V1(p̂ ) = {w : wJ G V(P3)} for all

sort-j sentence letters p. It is routine to verify that 

M' = (W', E, o', C', V 1) is a D-model.

Claim: For all sort-j sentences A~* , (M',w) }= iff

(M,wj) J= Aj .

Proof. By induction on the length of A^. We do the ugliest

case: AJ = CUB, . . .B where each B. is sort j. and1 n l l
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□  ((j1»....jn)) cw' X 2w ' X ... X 2W . (M',w) N A_. iff

W * |BJ m .  | Bn ' ’ i-e-’ ,iff
□  ((j1,---,jn)) WJ , (|bi Im ,)J1,..., |Bn lM .)Jn • But by induction 

hypothesis, if B is of sort-j then for all w in W  , w G Ib Im i 

iff wj ^ |bIm - Since M  is semi-normal, { wJ : w Ew'} = W_. .

Hence (|b |m ,)'1 = lB lM - Substituting equals, we get

Q((jl5...,jn)) wj , |B1|M ,...,|Bn |M , iff (M,wj)|=Aj . This 

proves the claim.

Since o' = o we get immediately that M t= A iff M ’ 1= A

for all sentences A. Now let M' = {M1 : M £ I-l) . It is clear

that K,. = K, • We must how show that M' is normal.
M  M

M = (W, E, o , C, V) is in /./' and w G W. Then there is a model

M = (W , o , C , V ) in M  such that M = (M )'. Since

w G W, there must be a model (M )w = (W , w, C , V ) in M.

From our construction it is clear that ((M )w) = (W, E, w, C, V).

Hence M' is normal.

Lemma 2.3. For every normal collection 11 of D-models suitable

for L there is a semi-normal collection M' of C-models for

L such that K, = K„,-
bl M

Proof. Let M = (W, E, o, C, V) be a model in M  where

E = {Ej : j G Q} and C = { □(j’) : □  is a type-r connective

of L and j* is in the domain of r} . Let W  = {W/j : j G Q}

and let o' = : j ^ Q} • For type-r connectives □ of

L and all j = (j^»...,jn) in the domain of r, we define 

O  (j) from D(j") as follows. If dOjf) C W x w then

□  (j) = { (tu]r(-, tv] ) : (u,v) G □(jj }. If
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u(j) C W X 2W X ... X 2W then OCj) = {([u] , S /j , . . . ,S /j ) :— J r ( _ - ] ) l l n n
(u, S1,...,Sn) e5(j) }. Let C' = {0(t) : 5(j) ^c}. (The

restrictions on O(j) stemming from M's being a D-model insure

that the members of C' are well defined.) Finally, let

V'(pJ) = : u G V(pJ)} for all sort-j sentence letters p.

It is now easy to check that M 1 = (W', o', C', V') is a C-model

and that for all [wl . in W. and all sort-i sentences, A**,

(M', twlj) h iff (M,w) i= A  ̂. Therefore, if M' = (M1 : M E M ),

~ hd '* Furthermore, suppose M = (W, o, C, V) E M' and

w £ Wj_. Then there is some model M = (W , E , o , C , V ) in

M  such that (M )' = M, and for some v in W , w = {u E W : u E. v}.3
Since M  is normal, (M )V = (W , E , v, C , V ) is in M. By

our construction, then ((M )V) = (W, U v]j : j e Q), C, V) is

in M ' . Since w = w bhe designated set of

((M )V) . Hence /■/1 is semi-normal.

Lemmas 2.2 and 2.3 show that nothing substantive hinges on 

the choice between C-models and D-models. The D-models, however, 

highlight an important property of many-sorted frameworks. A 

D-model is just an ordinary modal model with special restrictions 

on the interpretations of connectives and the valuation function.

Because the valuation function is restricted we cannot expect many- 

sorted logics to be closed under substitutions (compare Theorem 1.4f). 

Since a sentence letter of sort-j can be given a valuation which 

makes it true in exactly the same worlds as any j-sentence, however, 

we can expect many-sorted logics to be closed under substitution of
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sentences for sentence letters o_£ the same sort. Partial failure 

of substitutivit}' like difficulties in interpreting iterated modalities, 

is a sign that a many-sorted treatment might be appropriate.

Before proceeding to more technical results, a word should be 

said about what might have struck the reader as a needless compli

cation in our account. According to the formulation given above 

an n-ary connective □ can apply to sentences of different sorts. 

Wouldn't it have been simpler to have each connective apply to 

only one kind of string and be interpreted by a single relation?

The answer to this question is "Perhaps so, but it still wouldn't 

be desirable." Only "perhaps so," because if a connective had a 

type with an infinite domain it would have to be replaced by an 

infinite number of new connectives. "It still would not be 

desirable," because we would like the application of a connective 

to a sentence in our formal languages to mirror the application of 

connecting phrases to sentences in ordinary language. There are 

many cases in which a certain change in meaning in one kind of 

sentence parallels a change of meaning in another kind so closely 

that the same phrase is used to indicate both. For now we shall be 

content with a single example. Suppose S^, S^, are English

sentences whose truth depends on features 1, 2, 3, 4, respectively.

Then the sentence obtained by inserting 'and' between and

depends on features 1 and 2. The sentence obtained by performing 

the same operation on S2 and depends on features 3 and 4.

Clearly the most natural many-sorted language which captures the 

procedure of inserting 'and' between sentences would contain a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-114-

single connective, say 'A', that applies to sentences of sorts 

1 and 2 (yielding a sentence of a new sort, say {1,2}) as well

as to sentences of sorts 3 and 4 (yielding a sentence of a fourth

sort, say {3,4}).

We shall hold to the idea, therefore, that a single connective

of L may apply to many different kinds of strings of sentences.

We shall occasionally, however, abandon this idea in order to bring 

out similarities between many-sorted and one-sorted frameworks. If 

M is a model suitable for L we call M' and L1 the simple 

versions of M and L if L' results from L by replacing each ■ 

type-r connective □  by connectives D(jf) of sort rT{j*} for 

each in the domain of r, and M 1 is the model suitable for

V  such that WM , - W M , E[1, = Eh , oh , - o m and H M , -6,(1).

L' and M' are "simple" in the sense that each connective of L' 

applies to a single kind of string and is interpreted in M' by a 

single relation. The usefulness of simple models in brought out 

by the following observation. If we ignore the sorts of the sentence 

letters and the types of the connectives we change a simple many- 

sorted language L 1 into a one-sorted language which contains

as a subset all the sentences of the original language. If we drop

the E-coordinate from a simple many-sorted model M' we obtain an
2 2 ordinary model M suitable for L . Furthermore, for all A in

L', M' )= A iff |= A. We call and the unsorted

versions of M and L.
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E. Completeness

Many-sorted languages and models form a wider class than do 

those discussed in Chapter I, but most of the notions defined 

earlier can be carried over to the many-sorted case with little 

or no change. For example, we can use the old definitions of 

'consequence relation on L ', 'regular consequence relation on L', 

and 'finitary consequence relation on L' exactly as they stand.

The same applies to the definitions of consistent theory of

L' and 'maximal h consistent theory of L', and to the lemmas con

cerning these notions (viz., Lemmas 1.9, 1.10, 1.11a). In the 

remainder of this chapter, terminology, notation, and results of 

the previous chapter which can be applied directly to the many- 

sorted case will occasionally be used without special comment.

As before we take h to be a consequence relation on L.

In this section we show how the completeness proof in Chapter 

I can be altered to fit the many-sorted case. We prove two theorems 

(2.1 and 2.2) which are the counterparts of Theorems 1.4 and 1.5. 

First, however, we turn to the task of suitably generalizing the 

notion of classical model.

The salient features of a classical model are the simple rela

tions between the truth values of sentences in the model and the 

truth values of their Boolean combinations. It is easy to show 

(in either the one-sorted or the many-sorted case) that these 

properties characterize the models associated with classical con

sequence relations. More precisely, let the definition of, say,
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' I- has classical conjunction' be altered to read 'T.,A,B (- A

iff F }A A B !- A whenever A a B is a sentence." Then it can

be shown that if k, has classical conjunction, M €= M  and AaB 
M

is a sentence, then M t= AaB iff M (= A and M|=B. Conversely, 

if for every M in M, M k AaB iff M t= A, M t= B, and AAB 

is sentence then f=̂  has classical conjunction. In the single

sorted case, however, we were able to do better than this. We 

were able to define a simple, fixed relation, Conj W, such that, 

whenever had classical conjunction, we could always assume

' A'  was interpreted by Conj W in each member of M  with domain 

W. Conj W, however, does not in general meet the special restrictions 

needed to be included in a many-sorted model. In order to fix the 

interpretation for the Boolean connectives in many-sorted models we 

need to pay a little more attention to sorts than we have done in 

this paragraph. The treatment below is motivated by the remarks 

at the end of Section E.

2Definition 1.5. L is partially f-Boolean if

(1) The members of Q are sets and s U t £ Q whenever s £ Q 

and t £ Q.

(2) If any of the symbols ' a ' ,  ' v ' ,  are connectives of L,

then they are of type r where, for all s and t in

Q, r(s ,t) = s U t.

^The ' f ’ stands for 'feature-dependent'.
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(3) If the symbol is a connective of L, then it is of

type q where, for all s in Q, q(s) = s.

L is f-Boolean if it is partially f-Boolean and contains 1 a ' ,

'V’ > and as connectives.

Definition 2.6. I- is f-classical (partially f-classical) if 

L is f-Boolean (partially f-Boolean) and (CC), (CD), (Cl),

(CD) of Definition 1.17 all hold.

Definition 2.7. Let M = (W, E, o, C , V ) be a model suitable 

for the f-Boolean (partially f-Boolean) language L. Then M 

is f-classical (partially f-classical) if, for all s and t 

in Q, Eg u t = Es Et an<̂  each of the following conditions hold.

(a) A(s,t) = Conj W(s,t) = {(w,U,V) : [w]gUt S U/sUt H V/SUt} .

(b) V(s,t) = Disj W (s , t) = {(w,U,V) : [w] ̂ S U/s U t U V/s U t} .

(c) ->(s , t) = Impl W(s , t) = { (w, U, V) : U/sUt C v/sUt} .

(d) -(s) = Neg W(s) = {(w,U) : [w]g £ U/s }.

Lemma 2.4. If M is a partially f-classical model suitable 

for L then the following hold for all A, B in L and all points 

w o f M .

(a) If AAB is a sentence of L, then (M,w) i= A A B iff

(M,w) t= A and (M,w) t= B.

(b) If A V B is a sentence of L, then (M,w) = A V B iff

(M,w) j= A or (M,w) )= B.
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(c) If A B is a sentence of L, then (M,w) 1= A -> B iff

(H,w) M A or (M,w) i= B.

(d) If -A is a sentence of L, then (M,w) (= -A iff (M,w) &  A.

The proof is easy. We do -(a) as an example. Suppose s(A) = s, 

s(B) = t. Then (M,w) F A AB iff Conj W^(s,t) w, |a |m> |b Im>

i.e., iff [w] E |a |„/s Ut (1 IBI /sUt. ThereforeS U t  ' 1M 1 ' M

(M,w) F AAB implies Mgy,- G lA lM/sUt which implies there

is a v in W such that w Eg v and w Et v and v E |a |̂ .

Since A is sort s, Lemma 2.1 says that (M,w) f= A. Similarly, 

(M,w) |= A A B implies (M,w) t= B. Now suppose (M,w) f= A and

(M,w) 1= B; i.e., w E |a |m H lBlM ' Then clearly

[w] E | A | M/ q H for aH  sorts q. Hence (M,w) H A  B.

The classification of the non-Boolean connectives with respect 

to I- is straightforward.

Definition 2.8. Suppose f- is a consequence relation on L,

D  and E3 are type-r connectives of L, and j = (j ̂ ,...,j

is in the domain of r.

a) □  is ĵ -Montague with respect to if, for all A^, . . . ,A^

and all B.,...,B in L, if s(A.) = s (B.) = j. forI n  x i i
1 < i < n then M of page holds.

b) □  is T-normal-Kripke ( j}-normal-K4; ~f-normal-S4; J-normal-S5)

with respect to E if, for all subsets T, A , T , 0 of L

and all A, B in L, if s(T) = s(A) = s(A) = s(B) = j
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and j = (j) then K-. (K^ and 4Q ; Kq  , 4Q  , Sn  ;

KQ ’ 40  ’ SD » h  } on Page hold‘

c) (□ , 0) is a pair of j-tense connectives with respect to h

if, for all T, A, B meeting the conditions above, 

holds.

□  is Montague (normal-Kripke; normal-K4; normal-S4; normal-S5)

with respect to h if all instances of Mq (K^ and 4^ ;

, 4j_j , Ŝ , ; Kp , 4̂-j , , 5^ ) which are well-formed hold.

(So O 's being Montague entails its being j-Montague for all j

in the domain of r, but the'converse of this may fail.)

Theorem 2.1. Let M  be a normal class of models suitable for

L. Then

a) Every connective of L is j-Montague with respect to ^  .

b) If every member of M  is partially f-classical then f=̂ 

is partially f-classical.

c) If, for all (W, E, o, . . ., 5( j) ,. . .,V) in M , □(j) is a

point-to-point (transitive point-to-point; transitive and

reflexive point-to-point; transitive reflexive and symmetric 

point-to-point) relation then Q  is a j^normal-Kripke, 

i-normal-K4; j-normal-S4; 'j"^normal-S5 connective with

respect to f= y  .

d) If, for all (W, E, o, . .. , □(‘j) , SCj) , . .. ,V) in M ,

□(j) and 0(j") are transitive, reflexive point-to-point
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relations such that 0(j) is the converse of B(j) then 

(□,B) is a pair of tense connectives with respect to

Proof. The proof is almost identical to that of Theorem 1.4.

We do subcase (i) of (a) as an example. Let /= = j=̂ . Suppose

□  is type r, A. =( f= B. and s(A.) = s (B.) = j. for 1 < i < n,1 l l 1 1  — —
r(jl5 • • •,Jn) = jQ> and finally M = (W, E, o,. . . . . . .ĵ ) , . .. ,V)

— W Wis a model in M  such that R = 0(j^> • • • , ĵ ) C W x 2 x .. . x 2 .

Then M f= DA, . . .A iff R o, |A | ,...,|A | . Since M  is1 n 1 11M 1 n 1M
normal and A. =i f B. for 1 < i < n, each IA. I equals IB. I .i i —  —  1 i1M 1 'i'M
Hence M t= O A n . ..A iff M j= DB. . . .B . Therefore I n  I n
□A . . . A M |= DB .. . B .I n  I n

Theorem 2.2. If f- is a Montague consequence relation on L 

(see Definition 1.9), then there is a normal class M  of models 

suitable for L such that h is strongly complete for M  and 

the following hold:

a) If (- is partially f-classical then each member of M  is 

partially f-classical.

b) If □  is j-normal-Kripke (j-normal-K4, j-normal-S4) with

respect to (- then, for all (W, E, o,..., □( j) , .. . , V) in 

M, Q(j) is a point-to-point (transitive point-to-point, 

transitive and reflexive point-to-point) relation.

c) If has classical negation and □ is j-normal-S5 with 

respect to t- , then, for all (W, E, o,..., □(j),..., V) in
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M, OCj) is a transitive, reflexive and symmetric point-to- 

point relation.

d) If h has classical negation, then if (□ , B) is a pair

of j-tense connectives with respect to f- then, for all

(W, E, o,..., 5(j), B(j),..., V) in M, B(j) and a(j)

are transitive and reflexive and 0(j") is the converse of

B(j).

To prove this we shall need a few definitions and lemmas.

Lemma 2.5. Suppose the following all hold.

(1) □  is a type-r connective of L and (j^>•••jjn) is in

the domain of r.

(2) M and M' are two models suitable for L which are identical

except that M has • • • ,jn) where M' has □'(ĵ  ,. .., j )̂ .

(3) For all subsets of W^ ’ U1 = I Ai I m * * * * ’
U = IA L. for some A,,...,A in L^, . .. ,L^n respectivelyn 1 n 1M _ _ 1 n
and if w S L n then □  w, U^,. . . , iff

Q ’ w, ul5...,un .

Then for all sentences A of L, Mt= A iff M' 1= A.

Proof. Straightforward induction on the length of A.

Definition 2.9. A canonical model for A is a 5-tuple

(W, E, o, C, V) such that:

(1) W = ||WDh is the set of all maximal f- consistent sets of
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sentences of L.

(2) E = {IIÊ I I : j is a sort of L} where ̂ Ej V  =

{ (u,v) G llwll̂ X ll-wll : u n Lj = v n Lj}.

(3) o g  nwll̂ .

(4) C = {II D(j1,...,jn)ll : U is a type r connective of L

and ) is in the domain of r} , where

|| □  ( j  j | | i s  defined as follows: If O  is j^-Kripke

with respect to i- then IIG(ĵ )llj_ = {(u,v) : for all A

in L \  D A  G u => A G v} . If □  is not j^-Kripke with

respect to f-> then II = {(w, :

for some A1>---’An of sort resPectively »

Ul/j 1 = “AxV/Ji Vjn = llAnV/jn and A1---An Sw}.

(5) V is a function from the sentence letters of L into the 

subsets of W such that V(pJ) = {w : p"1 G w}.

Lemma 2.6. If M = (W, E, o, C, V) is a canonical model for

F, then it is a model suitable for L.

Proof. We need only verify that the proper restrictions on V

and the members of C all hold. First, if w E. w ’ then1
w n LJ = w* n L"1 . Hence p"1 e w iff pJ G w ', i.e., w G V(pJ)

iff w' G V(pJ). Second, suppose □  is a type-r Kripke connective,

j is in the domain of r, u E ... u' and v E. v'. Then J r(j) j

(u, v) G || D(j)||j_ iff for all A in , A G  u implies A G v . 

But u E ... u' means u H L,r^  = u' H Lr^  and A in
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implies DA in Hence DA £ u iff DA £ u'. Similarly

A £ v iff A £ v'. Therefore (u,v) £ |ld(j)ll iff for all A

in L"1 , OA £ u' implies A £ v', i.e. , iff (u* ,v') £ II Q(j) 11̂ .

Finally, suppose □  is a type-r Montague connective which is not

Kripke, (j ̂ ,. . . , j i s  in the domain of r, u Ê. v where

j = r(j^, . . . ,jn) and, for l £ i £ nJ ^]/^i = Vi^i* T*ien

(u, U1,...,Un) is in I! IZ1 (j 1,. - -, j n) II iff for some A^.-.jA^

in ^.... L"111 respectively, U^/j^'= HAJI /j^ . . . , Un ^n =

IIA II, /j and □ A 1 . . .A £ u. Since u H = v H , andn 1- n I n
U. /j . = V. /j . , this holds if (v, V , ,V ) is in II D(j , .. . ,j ) II.1 1  l l I n  I n

Lemma 2.7. Suppose s (A) = s (B) = j. Then ||A||̂_/j C || B ||̂_/j 

iff A h  B.

Proof. First suppose A i- B. Then [u]̂ . £ llA||̂_/j => there is a

v in IIWII such that u E. v and v £ IIAll , i.e., there is a h j ' h
v in ||W||̂ such that u H L** = v H and A £ v. Since A h  B 

and v is maximal p consistent, B £ v. But B is of sort-j , so 

B £ u. Hence u £ ||B||j_ and [u]̂ . £ l|B||/j. Next suppose

A f/ B. Then u = ({A}, {b }) has a maximal consistent extension,

u1 and [u']j G llAll̂ /j but [ u ’ ] ̂ ® l|B||/j.

Lemma 2.8. If M = (W, E, o, C, V) is a canonical model for 

I- and A is in L then (M,w) = A iff A £ w.

Proof. By induction (similar to the proof of Lemma 1.12)

If A is a sentence letter, (M,w) = A iff w £ V(A) iff

A £ w .
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If A = OB where □  is vj)~Kripke and B is sort-j, 

then (M,w) M A iff, for some u in W, w II □ C j) II u and

(M,u) # B. By induction hypothesis, then, B ^ u. But B

is sort-j, so this means DB cannot be in W. Conversely,

if . OB ^ w then the theory u = ({C £ : DC £= w} , {B})

must be consistent. (If it weren't then the (j)-normal-Kripke-

ness of h would be violated.) Therefore we can extend u

to a maximal f- consistent theory u' such that w II □( j) II u'•

But B ^ u'. Hence by the induction hypothesis this means

(M,w) f= DB.

If A = QB^.-.B^ where □  is j-Montague and not j-Kripke

with respect to l- and i = (s (B̂ ) , . . ., s (B^)) then (M,w) f= A 

iff II 0( f ) IIw, IIBxIIM , • • • ,HBnllM . By induction hypothesis 

this holds iff HD(j)llh w, llB1ll|_,...,llBnll(_. Therefore if 

(M,w) ^ A, II □(J)ll)_ w, II B̂ llj_ , .. ., II Bnllj_ does not hold. Hence 

^ Bl"‘,Bn iS n0t in W ‘ Conversely, if (M,w) f= A then
□  w, 11B || ,.... || B || , so there are sentences C.,,...,C1 I- n f- i n
such that for 1 < i < n, IlC.II./j. = llB.H,/j. and C ...C — — i H i i (- l 1 n
is in w. By Lemma 2.7, C_ -I t- B . for 1 < i < n. Since

3 1 i — —
□  is x-Montague, UC, ...C -4 H UB . . .B . Hence6 1 n I n
A H= OB. . . .B is in w .1 n

Theorem 2.2 can now be proved from the above lemmas exactly as

Theorem 1.5 was proved from the lemmas preceding it. More specifi

cally, let M  be the class of all canonical models for L,
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M  be the result of replacing A(s,t), \/(s,t) -*(s,t), -(s,t)

in each model of M  first coordinate W by Conj W(s,t),

Disj W(s,t), Impl W(s, t) , NegW(s,t), respectively, then it is 

easy to check that:

(1) |- is complete for M.

(2) If □  is j-normal-Kripke (j-normal-KA, ;f-norinal--S^) 

with.respect to I- then O(jf) is a point-to-point 

(transitive point-to-point, transitive and reflexive point- 

to-point relation).

(3) If L contains the unary connective CN of Definition

1.17 holds and □  is j-normal-S5 with respect to (-, then 

□(j) is a transitive , reflexive and symmetric point-to-point 

relation.

F. Reduction to single sort

It is well-known that classical, many-sorted theories are 

reducible to single sorted ones. There is a trivial analog to 

this in the case of our many-sorted propositional languages.

For there is a natural translation from a language L 
2to its one-sorted version L , namely, the function f such that 

f(p) = p for all sentence letters p and f(DA^...A^) =

(jJA^.-.A^ where = (s (Â ) , . . . ,s (A^)). Since f is one-one 

the f-extension H 1 of must be a consequence relation on 

L' which has b as a fragment (see remarks after Definition 1.40). 

We cannot assume, however, that properties of f- carry over

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-126-

to I-1. For example, suppose O  is a unary connective of L

which is Montague with respect to 1- and which applies to A,

but not to B; suppose further that A -| h B and not A |- <f> .

Since D B  ^ L we do not have f̂ ] A b 1 gj B where = (s (A)) , so

ffl is not Montague with respect to h 1 .

We would like to modify the definition of I-' so that 

Qjf A I-1 0  B holds, but we must be careful that in so doing we

do not get jjJ B h' C for any C in L such that O A  f/ C. And

there are properties besides D's Montagueness that we would like 

to preserve as well. In this section a construction suggested 

by the standard reduction of many-sorted predicate systems is used 

to obtain a more suitable f-1. We borrow freely from the first 

part of section H, Chapter I. (This is permissible because a 

language is taken there to be merely a collection of structureless 

obj ects.)

Let L be the language obtained by adding to the unsorted 

version of L a new unary connective (j) for each sort-j in Q. 

(Intuitively (j) asserts something like "A is a true sort-j 

sentence" and, if 'y' and are classical, (]}A V (̂ f)- A

asserts something like "A is a sort-j sentence." But this

reading is not quite accurate because (J)A will turn out to be 

valid whenever A is.)

Let f : L -»• L be defined as follows: If A is a sort-j

sentence letter, f(A) = @ A ;  if A = DA^-.A^ where □ is a

type-r connective of L, (s (A^) ,.. . ,s (A^)) and r(f) = j,

then f (A) = (j) |̂J f (Â ) . .. f (Â ) . In order to make certain that
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the consequence relation we construct has the right properties we

must now make a detour through models.

If M is a model suitable for L, call a model M° suitable

for L° a one-sorted derivative of M if W^o = W^, o^o = o ,̂

(t) o = f°r aH  O  in L, @  o = E. , and V q is such
1 M

that, if p is a sort-j sentence letter of L, then u ^ V^Cp)

iff for all w, u E. w implies w £ V (p). (Notice that each 
JM M°

model suitable for L° is a derivative of at most one model

suitable for L. An easy induction establishes that if M°

is a one-sorted derivative of M, then for all A in L,

(M°,w) F f(A) iff (M,w) F A.

By Theorem 2.2 we know h is complete for a class of models

M  such that, for all M in M, is a point-to-point

(transitive-point-to-point, etc.) relation if □  is "j'-Kripke

(j*-K4 etc) and (“ (j) > etc) is Conj w (3*) (Neg W(j) , etc)

if - has j-classical conjunction (j-classical negation, etc).

Let M° be the class of all M° such that, for some M in M,
oM is a derivative of M. From the observation in the preceding

paragraph it follows that, for all F,A C L, T f=̂  A iff

f(T) (= f(A), so 1=.. is a fragment of b
H° M  M°
It remains to show that }= is more useful than the I-' o

M
defined earlier. Notice that the relevant properties of □  with 

respect to f- are characterized by conditions on the relations 

□̂ .(j-) . But, for each 3* and each M in M, ^jCf) = S ^ 0*

Hence we can infer immediately that if □  is 3~Kripke with respect
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to 1- ( = f=^), for example, then [J] is Kripke with respect

to • (The special connectives (j) are normal-S5 with respect

to f. because (̂ ) is always an equivalence relation.) It will

always be clear from the context what kind of models the arguments

and values of and g^ are intended to be. We can show that

is valuation-unrestricted, (in the sense that it contains all

models (W, E, o, C, V) suitable for L such that (W, E, o, C, U)

is in M  for some U) if and only if M° is valuation-unrestricted

(in the usual sense). For suppose M  is valuation-unrestricted

M° = (W, o, C, V) is in M° and X is a function from sentence

letters to subsets of W. Then there is some model

M = (W, E, o, B, U) such that M° is a derivative of M. If

p is a sort-j sentence letter of L, let U'(p) =

(w : V'u (u E w =* u G X(p))}. Then (W, E, o, B, U') is’ in M.

But (W, o, C, X) is a derivative of (W, E, o, B, U'). Hence

it is in M  . To prove the converse it is sufficient to note
o othat every model M in M  has a derivative M in M  with

the same valuation. Furthermore, if M° is also a derivative

of M', then M = M'.

We now collect for reference some facts which follows from 

the above.

Theorem 2.3. Let r is a consequence relation on L and L 

is the (one-sorted) language obtained by adding to the unsorted 

version of L a new unary connective [j] for each j in Q.
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Then there is a consequence relation 1-° on L° such that:

1) h is a fragment of J-°.

2) If f- is normal-Kripke (normal-K4, normal-S4, normal-S5) 

then so is |-°.

3) If }- is complete for a class of frames then so is (-°.

G. Sort restrictions in the standard logics

At the end of section G of Chapter I it was shown that complete

ness results for many simple modal logics follow from Theorems 1.4 

and 1.5. Similarly, we can now use Theorems 2.1 and 2.2 to obtain, 

completeness results for some many-sorted versions of these logics.

But first we should say something about why sort distinctions are 

needed. The most convincing arguments for sorts, it seems to me, 

occur in connection with tense logics. These are discussed in 

section C. A case can be made, however, for the appropriateness 

of sort distinctions in logics for necessity.

Sentences, it might be argued, come in two varieties. Those of 

the first variety, (e.g., "The cat is on the mat") are not true or false 

but true or false in _a particular situation. Now suppose we prefix 

to a sentence of the first variety the phrase "There is some situation 

in which...". The resulting sentence is of a new variety —  it 

is not true-in-a-situation or false-in-a-situation, but simply 

'true' or 'false1. But it follows from our earlier remarks that 

the operation of prefixing "There is some situation in which..." 

to an English sentence is mirrored in certain of our formal frame
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works by the operation of prefixing the connective □  to a

sentence. These frameworks are ones in which the language contains

□  as the only non-Boolean connective and □  is normal-S5. We

can therefore distinguish between at least two sorts of sentences,

those which are situation-evaluated (sort {1}) and those which are

not (sort { 2 } ) □  applies to sort {1} sentences and yields

sort {2} sentences. Since it does not make sense to prefix "There

is a situation in which..." to sentences which are not situation-

evaluated, we can also specify that □  does not apply to sort-{2}

sentences at all. We can introduce a new sort, {1,2}, to include

Boolean combinations of sentences which are situation-evaluated and

sentences which are not. It seems reasonable to allow □  to

apply to sort-{l,2} sentences as well. The result will always

be a sort-{2} sentence. Call the language with these features L .

Let h- be the smallest classical consequence relation —  on L s5
such that □  is normal-S5 with respect to (-. (We could similarly 

define ^  > but there seems little reason to do so.)

Let M  be the class of all classical models suitable for L 

such that, for all M in M  , (E^ 2}^M = Ê{l}^M = ^ u’v^:u = ’

(e{2})m ■ WM x V  and Hi((tl>)) ■ Hi((tl>2,)) ■ hm * hr

The fact that a sentence is situation-evaluated does not mean 
its truth must change from one situation to another. We want to 
distinguish between sentences like 'pV - p' and 'pA - p' which 
happen to come out true in every situation or false in every' 
situation and sentences like 'Dp' in which the present situation 
plays no role in the assessment of truth.
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Theorem 2.4. Î v = K.+ •  S 5 M*

Proof.

(i) Soundness. It is sufficient to prove that is 

classical and closed under all well-formed instances of

K_j , ^  , and . For, since ^  is the smallest

such consequence relation this will show ^  —  ' T':iese

facts can be proved in the same manner as in the one-sorted

case. (Theorem 1.4 c,d) For example we prove Kq  : Suppose

F 1= * A where T U {A} C L^"^ U l ^ ’2  ̂ and M £= M  such
M  —

that M h O F .  Then, for all B in '"1 T and all u

such that oD^(({l})) u, (M,u) = B. Similarly, for all

B in L^1,2  ̂H T and all u such that o (({1,2})) u,

(M,u) 1= B. These conditions together just say that for all

u in Ww and all B in T (M,u) t= B. Since T K  A this M ' Ar
means M 1= D A  (regardless of whether A is in L^"^ or

(ii) Sufficiency. Suppose not V A. Then there is a canonical 

model M for lg-̂ such that M h T but, for all B in A,

M  ̂B. Let M* be the member of M  with domain

W = {u : o ilDllu} and valuation V such that for all

sentence letters p, V* (p) = V^(p) Cl W .

Claim: For all w in WM*’ (Mx,w) f= A iff (M,w) f= A.

Proof. By induction on A. The crucial case is A = LlB for
f 1 2 TB G L  ’ , (M,w) 1= A iff D B G  w (by Lemma 2.8). Since
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B g^lg^ B a U  GB V DB) , we have DB ^  D(B A (~ DB v DB)) .

So OB € w iff □ ( B a ( . O B V O B ) ) 6 w iff (M,w) f= D(B A (~ DB y DB))

iff Vv E w II ( ({l, 2})) || v implies (M,v) f= B a (~ DB V DB)

iff Vv 6 W , (M,v) t= B and (M,v) N (~ DB VDB) iff

Vv E W^_, (M,v) (= B iff (by induction hypothesis) V v £ W ^

(M*,v) t= B iff (M*,v) H GB. This proves the claim. Hence

M* f= T and, for all B in A , M* (V B . Thus r , A and 

the theorem is proved.

Corollary. L( ^  ) = S5 n l*.

Proof. Let M  be the class of all (one-sorted) models, M, 

suitable for the (one-sorted) language L with the sentence letters 

of L*, binary connectives ’A ’, ’V', and unary connectives

and such that M is classical and □, = Ww x W,,.M M M
From Chapter I we know S5 = L( t=^). For all M in M  let

M+ = (W, E, o , □  (({l})), 5(({1,2})), V) be the classical model

suitable for L such that W = W^, E{]_}= 2} = e1ua-'-:i-ty on w >

E{2}= W x w, o = oM , V = VM and □ ( ({l})) = 0( (U, 2 » ) = W * W.

M  = (M+ : M G M} is just M  . Furthermore, for all A in L5'

and all M in M, (M,w) F A iff (M+ ,w) /= A. Hence =

t=M  n(2LA X 2L*) and L{ ) = S5 n L*.

Corollary. 1— ^ is complete for a class of frames.
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CHAPTER III 

SORTS AND THE TENSES OF ENGLISH

A. Introduction

It has often been observed that "tense connectives" like those 

discussed-in Chapter I do not provide a very satisfactory analysis 

of the tense constructions of English. In this section we try to 

show that all the common English tense constructions can be repre

sented in a many-sorted tense logic. More specifically, we construct 

a system called ET (for 'English Tenses') in which sort distinctions 

are used to repair at least three flaws in the representation of 

English sentences by formulas of traditional tense logics.

Perhaps the most obvious discrepancy between tensed English 

sentences and formulas^ of a one-sorted tense logic is that the 

former may describe events which take place over a period of time, 

whereas the latter are always evaluated at. points representing 

instants of time. When wTe say "John built a house," for example, 

we are talking about what happened at an interval that includes 

both the moments John spent laying the foundation and those he spent

In this chapter we depart from the terminology of the rest 
of the thesis by using the word 'formula' only in connection 
with formal languages and the word 'sentence' only in connection 
with natural languages.
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shingling the roof. (To describe the state of affairs at a parti

cular instant of this interval we use the special construction 'John 

was building a house'.) On the other hand, sentences like 'DeGama 

crossed the equator' and 'The cat was on the mat' describe states 

of qffairs which obtained at a single moment of time.

A second deficiency of one-sorted tense logics is their failure 

to take account of the differences between sentences like 'John swims 

in the Channel' and 'John swims across the Channel'. The first 

sentence has the property that it truly describes an event which 

takes place during an interval I of time if and only if it truly 

describes an event which takes place at all subintervals of I.

The second does not. A distinction like this is needed to account 

for the fact that 'John is swimming in the Channel' implies 'John 

has swum in the Channel', but 'John is swimming across the Channel' 

does not imply 'John has swum across the Channel' . This sort of 

phenomenon has been noted by grammarians and philosophers since 
2Aristotle.

A third shortcoming of the traditional tense logics is that 

formulas are evaluated only relative to their utterance-times.

In natural languages the context in which a sentence is uttered 

often indicates that it should be evaluated relative to some other 

time. The formula representing 'Baltimore won the Pennant', for 

example, is true at time t if there is some time preceding t at 

which 'Baltimore wins the Pennant' is ture. But a sentence like

^See fPenner 1970] .
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'Baltimore won the Pennant' is usually uttered with a specific time 

in mind and is considered false unless the event described took place 

at that time. In other words, past tense sentences are generally 

taken to be making an implicit reference to a specific prior time.

To express the idea that there was some prior time at which the 

event occurred it is more natural to use the present perfect, e.g., 

'Baltimore has won the Pennant'). In traditional tense logics, 

however, there is no way to distinguish between simple past and 

present perfect.

The first two of these problems can be solved without much 

difficulty. To deal with the first, we require that the language 

of ET contain two sorts of sentences: 'interval-evaluated' and

'instant-evaluated' ones. The progressive tense operator will 

apply only to interval-evaluated sentences, and yield only instant- 

evaluated ones. To deal with the second problem, we distinguish 

between two kinds of interval-evaluated sentences: those with the

subinterval property and those without it and specify that, if p 

is an interval-evaluated sentence letter with the subinterval 

property, then any ET-model which makes p true at interval I 

must make p true at all subintervals of I.

The third problem, however, is not so easy to handle. We can't 

simply ignore the utterance time and evaluate 'Baltimore won the 

Pennant' relative to an arbitrary reference time. For we do not want 

to accept the sentence as true unless the time referred to precedes 

the utterance time. Uttered today in a discussion about the events 

of 1980, the sentence is simply inappropriate. For this reason it
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seems natural to evaluate sentences relative to two times —  an

utterance time and a reference time . Then 'Baltimore won the

Pennant' will be true when uttered at time t with reference to

t' if t' precedes t and 'Baltimore wins the Pennant' is true 
3at t'. Several authors have in fact argued that this kind of 

'two-dimensionality' is needed to deal with tenses in subordinate 

clauses anyway, so this step is not so drastic. Unfortunately, 

however, it is not enough. For if the Boolean connectives are 

interpreted classically, then it is apparent that Boolean combina

tions of future tense and past tense sentences will always turn out 

to be inappropriate. These are circumstances, however, in which a 

sentence like 'If Robinson missed batting practice, Baltimore will 

lose' seems perfectly appropriate.

Apparently compound sentences can make implicit reference to 

several times. If we are to incorporate this feature in ET, we 

must specify some procedure for determining which time is relevant 

to the truth of which clause. One solution would be to evaluate 

formulas at sequences of times. A conditional p D q, for example, 

would be true at (u,v) if q were true at v whenever p was 

true at u. There are, however, two objections to this approach. 

First, it requires us to consider arbitrarily long sequences of 

times. Second, it allows us to assign distinct truth values to 

classically equivalent formulas, p A q and - r 3 - s, for 

example, could both be false at (u,v) even though q A p and

3See [Kamp 1971], [Vlatch 1973], and [Gabbay 1974].
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s 3 r were both true.

It seems preferable, therefore, to say that we actually deter

mine which time a clause refers to by noticing its tense. We assume 

the speakers remarks are appropriate and true and we try to choose 

from among several possible alternatives a reference time which 

will verify this assumption. In ET, therefore, formulas are 

evaluated at utterance times with respect to sets of possible refer

ence times. A past tense formula P  q is true at t with reference 

to R if there is some (instant or interval) t' in R  such that 

t' precedes t and q is true at t'. AaB is true at t with 

reference to a set R if both A and B are true at t with 

reference to R . For example, suppose the context indicates that 

the only possible reference times are the intervals and instants of 

June 1, 1970. The sentence 'Robinson took batting practice and 

Baltimore will lose', uttered at gametime on June 1, is considered 

true if there is some interval of June 1 prior to gametime during 

which Robinson took batting practice and there is some instant of 

June 1 after gametime at which Baltimore will win.

It might be felt that this view sanctions an excessively lenient 

standard of truth. Suppose, for example, that Baltimore happened to 

be playing a double-header on June 1. We would be forced to accept 

the clause 'Baltimore will lose' as true if Baltimore will win the 

first game and lose the second. Surely, the critic might say, 'Balti

more will lose' is false —  or at best ambiguous —  when uttered in 

this context. Our reply is that the critic may well be right in 

calling a particular utterance of 'Baltimore will lose' ambiguous.
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But it is ambiguous only because the possible reference times have 

not been made clear. Once the possible reference times are made 

clear we will certainly want to count the sentence true if it des

cribes an event which occurs at any of these times. Suppose, for 

example, that our questionable clause had occurred in a paragraph 

beginning 'Next week will see many surprises in professional sports.' 

Surely we would then count our clause true if Baltimore should lose 

any game next week.

There is a second, related objection which might be raised to 

the treatment suggested here. A sentence like 'Baltimore won and 

Baltimore lost' sounds inconsistent; but on our interpretation there 

are contexts in which it comes out true. The sentence sounds incon

sistent because ordinarily we infer 'It is not the case that Balti

more lost' from 'Baltimore won'. But this inference depends on 

two things: i) a tacit premise about the relation between winning

and losing and ii) the assumption that premise and conclusion refer 

to the same time. Both of these can be made explicit in our formal 

framework, and we can then show that 'Baltimore won and Baltimore 
4lost' is false. It should be pointed out that a genuine contradict

ion (like 'Baltimore won and it is not the case that Baltimore won') 

is, on our account always false.

4In general it seems much more sensible to treat inferences 
of natural language by this two-pronged method of making premises 
explicit and finding semantical conditions corresponding to pre
suppositions than by merely adding premises until the argument goes 
through. Some presuppositions —  like the one that two clauses 
refer to the same time —  are clearly semantic.
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B. The Language of ET (LET)

It might be supposed that our language should contain one 

connective for each English tense. It turns out, however, to be 

more economical (and probably more illuminating) to take three 

tense connectives as primitive and show that any tensed sentence 

can be represented by applying these three to a group of basic 

formulas. Basic formulas are distinguished by the fact that their 

truth and appropriateness are independent of their 'utterance time'. 

Tense connectives, when applied to these, determine whether their 

reference time precedes or succeeds their time of utterance. It 

only makes sense to supply this information once, so tense connect

ives cannot be iterated. Since tense does not completely determine 

reference time, English contains a number of expressions which, when 

prefixed to tensed sentences, narrow further the range of possibili

ties. Vie include two of these in our formal language because their 

presence exposes some of the differences between the tenses.

Definition 3.1. The set Q of sorts of L ™  is the set of -------------- El
non-empty subsets of {u, t, I, Ig , <, > }.

Intuitively {u}, {t}, {l}, and ate the one-dimensional

sorts. {u} is the sort of sentences whose truth depends only on 

utterance time. {t}, {I}, and (ig) ate the sorts of sentences

whose truth depends only on reference time: the reference time is

either an instant, an interval or an interval-with-the-subinterval- 

property according to whether the sentence is of the first, second, 

or third of these sorts. A sentence of sort {<} is one which
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refers to a time prior to its time of utterance, and a sentence of 

sort {>} is one which refers to a time after its time of utterance. 

Sentences of the other sorts are Boolean combinations of simpler 

sentences.

It is not always obvious which sort of formula should be used 

to represent an English sentence, but there are syntactic tests 

that can provide good clues. If it is appropriate to ask 'When?' 

after the utterance of a sentence, or to add a clause beginning 

'when...' to the end of the sentence, then that sentence is not 

of sort u. If a sentence admits a progressive tense it must be 

either of sort I or sort Ig. If phrases like 'for a while' can be 

added to a sentence then the sentence is not of sort I. Facts like 

these suggest that our sort distinctions are more than a convenient 

theoretical device for making the truth conditions come out right.

They play a role in grammar as well.

Definition 3.2. is the Q-sorted f-Boolean language^ described

below.

There are countably many sentence letters of sort t, sort I, and 

sort I . There are two unary basic connectives, ' Pva ' and 'Perf' .

'Prg ' applies to sentences of sort {l} or sort t0 form

a sentence of sort {t) . 'Perf' applies to sentences of sort {t},

{I}, or to form sentences of sort {t}. There are three

unary tense connectives, 'P', 'F' and 'N'. 'P' and 'F'

^See Definition 2.5.
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apply to sentences of sort {t}. (i), or {lg} and yield sentences

of sorts {<} and {>}, respectively. ' N' applies only to

sentences of sort {t} and yields sentences of sort {u}. Finally,

there are two unary time-specifying connectives 'T' and ' Y'

(for ’tomorrow1 and 'yesterday' which apply to sentences of sorts 

{<} and {>} respectively, and yield sentences of sort {u}.

C. Models and truth

In this section we specify how the formal language is to

be interpreted. Our initial formulations (Definitions 3.4 and 3.5)

will be designed to conform as closely as possible to the general

treatment for many-sorted systems presented in Chapter 2. We will

then show (in Lemma 3.1) how the truth definitions can be written 
6in a more perspecuous form.

Definition 3.3. A time structure is a pair (T,<) such that T 

is an infinite set and < is a linear order on T. If (T,<) is 

a time structure, we write 'a > b' to mean b < a, 'a _> b' to 

mean not a < b, and 'a <_ b' to mean not b < a. An interval

on (T ,<) is a set I C T such that if u £ I, v £ I, u<_x

and x v, then i. if i is an interval on (T,<) then

Interior (I) = (x e I : 3y £ I, y > x and 3z £ I, z < x} .

^The reader who has difficulty understanding Definition 3.4 is 
urged to look ahead to Lemma 3.1.
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A temporal context in (T ,<) is a pair (a,/?) such that a € T 

and R C T  U {intervals on (T,<)}.

Definition 3.4. Let (T,<) be a time structure and let I be 

the set of all intervals on (T,<). An ET-model on (T ,<) is an

f-classical model suitable for such that the following hold.

1) W is the set of all temporal contexts in (T.,<)•

2) (a, R) “(u) <b-S) iff a = b .

3) (a, R) E(tj (b,S) iff R n t = 5 n t .

4) (a,/?) E{ I }  <b'S> iff r r> i = s n I.

5) E(IS} ‘ E{I}'
6) (a,i?) E{<} iff (x e r : a > x} = {x G S : b > x

7) (a,/?) E{>) (b,S) iff {x G R: a < x} = {x £ 5 : b < x

8) • (a,i?) Prg({!}) (b ,5) iff, for some X in I and some

c in f? H x, S H I = {A'} and c 6 Interior (X) .

• Prg ({I,,}) = Prg ({I}) •
9) • (a,R) Prg ({I}) (b,S) iff, for some x E T and some

cin i? fIT, S fl T = {x} and c > x.

The clauses for P e r f ({I}) and Perf ({Ig}) are the 

same except that 'x £ T ' is replaced by 'x E I' and 

'S H T' is replaced by 'S H I1.

10) • (a,R) P ({t}) (b ,S) iff, for some x in R H T,

5 n x = {x} and a > x.

The clauses for P  ({I}) and P ({lg}) are the same 

except that 'R C\ T1 is replaced by 'R n I ' and

^See Definitions 2.3b, 2.7.
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'5 n T ', by 'S n 11 .

* The clauses for F ({t}) , P({l}) , and F({lg}) are 

the same as those for P({t}), P({l}) and P({I }) , 

respectively, except that 'a > x' is replaced by 

'a < x 1 .

11) (a,R) (b,S) iff 5 n T = {a}.

12) (a,R) F {>) (b ,S) iff there is a c such that

5 {x : b < x} = {c} and [a] + 1 < c, [a] + 2 > c.

13) (a,R) Y (<) (b ,S) iff there is a c such that

S H {x : b > x} = {c} and [a] - 1 < c, [a] > c.

14) If p is a sentence letter of sort {t}, {I}, or {I },

then (a,R) £ V(p) iff (a,{b}) £ V(p) for some

b £/?. Furthermore, if p is of sort {1^,

(b, {i}) £ V(p) implies (b , {j}) E V(p) whenever

j is a subinterval of i.

M is an ET-model if it is an ET-model on some time structure. It 

is easy to check that conditions 1-14 do determine a model suitable 

for Let in the sense of Definition 2.3b. For example, suppose 

(a ,H) F( I) (b,S), (b ,5) E]; (b',5’) and (a ,R) E> (a ’,/?').

Then: 1) For some x in i? H I, S I = {x} and a < x.

2) S' n I = S H I and 3) R H {x : a < x} = R' D  {x : a1 < x} .

By 1) and 2) S' H I = {x}. By 1) and 3), a' < x and

x £ R' H I. Hence (a' ,R') F(I) (b',5').
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Truth is defined a little differently than usual.

Definition 3.4. Let M = (W, E, o, C, V) be an ET-model

and let (a,S) be in W. Then A is appropriate at (a,/?) in M

if one of the following holds.

A = PB and there is a b in R such that a > b .

A = FB and there is a b in R such that a < b .

A = Prg B, Pe r f B, N B , TB or YB.

A is a Boolean combination of formulas, all of which are 

appropriate at (a,R) in M.

A is true at (a,P) in M ((a,A) F A) if A is appropriate

at (a,R) and one of the following hold.

A = p and (a,A) - V(p).

The main connective of A is Boolean and the usual conditions 

on the truth of A's main subformula (s) hold.

A = CjB (where □  is non-Boolean, B is of sort-j , j is 

in the domain of the type of □) and there is some (b,S) in

such that (a,A) d(j) (b ,S) and (b,5) = B.

A is false at (a,p)

If a is appropriate at (a,P) , but A is not true at (a,P) .

A is appropriate (true, false) in M if it is appropriate

(true, false) at the designated point in M.

Lemma 3.1. If M is an ET-model on (T,<), I is the set of

all intervals on (T,<) and (a,i?) G W^, then
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1) (a,R) f= Perfk iff 3b £

(a, {c}) f= A.

2) (a,P) (= Prg A iff • 3b £

(a, (c)) t= A.

3) (a,if) 1= PA iff 3s S j?,

4) (a,P) f= PA iff 3s e E,

! n x, 3c  e T u I: b > c

? n T, 3c 6 I: b £ Interior (c),

a > s (a, {s}) f= A.

a < s (a, {s}) f= A.

D. The Tenses of English

The table on the next page indicates how English tenses are 

represented. Notice that not every formula of ET can represent 

an English sentence. In particular formulas of the form Prg p 

and Perfp do not by themselves correspond to English sentences. 

These formulas, together with the atomic ones, make up the class 

of basic formulas mentioned in section B. Tensed sentences are 

represented by applying the connectives 'P' , 'P', and V/' to 

the basic formulas. In this section we list some of the important 

features of this representation.

1) Every English sentence not in the present tense is represented 

by an instant-evaluated formula. But the interval-evaluated 

formulas are still needed to account for the differences among 

the tensed sentences. [See 5, 6, 7 below.]

2) A sentence in the present tense is taken as saying that the 

event described takes place at some interval determined by 

context. So 'Dan drives to Detriot' means that a drive-to-
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Detroit-by-Dan takes place at the understood interval. Of 

course present tense English sentences are sometimes, (in fact 

usually) construed in other ways. But it can be argued that 

these other interpretations are derivative in the sense that 

they can be obtained by prefixing modifiers like 'occasionally' 

or 'customarily' to present tense sentences of the kind we are 

considering. One such 'derivative' interpretation gets special 

mention in the table —  present tense instant-evaluated 

sentences (like 'It is cloudy') are usually taken as saying that 

the event described takes place at the moment of utterance.

Such sentences can be represented in ET by a formula of 

the form IIq.

3) The operators 'II', ' Y', and ' T' each supply the reference 

time at which succeeding clauses are to be evaluated. Hence 

none of these connectives can be applied to a formula which 

already contains an instance of any of them. So sentences like 

'Yesterday John will come tomorrow' and 'Yesterday Yesterday 

it was Monday' are ungrammatical. 'Yesterday John came and 

tomorrow he will leave', however, is all right since there is 

no nesting of the operators.

4) 'John has built a house' is taken to mean that John is now 

a former builder-of-a-house. Since 'Yesterday' supplies a 

reference time for the sentence which follows it, Yesterday 

John had built' a house is well-formed, but 'Yesterday John 

has built a house' is not.
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5) 'John built a house' is taken to mean that (at some prior

interval supplied by context) 'John builds a house' was true.

Hence, if John built a house two days ago, then 'Yesterday

John built a house' is false, but 'Yesterday John had built

a house' is true.

6) The progressive form of a sentence is true when it refers to 

an instant in the interior of an interval at which the original

sentence is true. But all past and future tense sentences 

and many present tense sentences (like 'John owns a car') can 

only be true at instants. Hence none of these sentences have 

progressive forms. For the same reason, the operation of 

forming the progressive cannot be iterated.

7) 'John was building a house' is taken to mean that there was

some instant contained in an interval at which 'John builds

a house' is true. Hence 'John was building a house' is unlike 

'John built a house', John 'has built a house' and 'John had 

built a house' in that it does not entail that a house was 

finished. (It does, however, entail that one will be finished 

eventually.)

8) To form the past or future tense of a basic sentence is to

locate the event described in that sentence relative to the

moment. This can be done at most once and, if the event is

already located, there is no point in doing it at all. For

this reason the operation of forming the past
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tense isn't performed on sentences which are already 

in the past tense —  or on those which are in the future 

tense. In ET 'P'. and 'F' don't apply to formulas beginning 

'P', 'F' and '[•]', ’2” , and 'Y' .

9) The distinctions among interval-evaluated sentences alluded 

to earlier are preserved in ET. 'If John is swimming in the 

Channel then he has swum in the Channel' is true in all ET- 

models, but 'if John is swimming across the channel then he 

has swum across it' is not.

10) No non-Boolean connectives can be applied to Boolean combina

tions of formulas of different sorts. If an English sentence

appears to have this structure, it is being misread. Thus 

'Professor Jones is writing his book and teaching' should not 

be represented by something of the form 11 Prg (p A q) but 

rather by a formula of the form II Prg p A II Prg q. For other

wise we would be forced to call the sentence false unless the 

teaching began at least as early as the book writing. Similarly, 

'Jones wrote his book and taught' should be represented by 

P p A p  q rather than by P(p A q). These arguments do not 

apply to Boolean combinations of formulas of the same sort.

11 Prg (q^ A q2) is a well-formed formula of and may be

taken as a translation of 'Jones is writing and teaching'.

Notice, however, that this formula is equivalent to 

N Prg q^ A 11 Pic so this particular construction is not 

really needed. II Prg (p^ a P2) is also well-formed but it
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is not equivalent to N  Prg A N Prg ? 2 ' T*ie Quest::i-on °f 

which of these should be used to represent 'John is teaching 

Philosophy 150 and writing his book' is determined by context.
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CHAPTER IV 

QUANTIFIERS AS MANY-SORTED CONNECTIVES

A. Introduction

The observation that quantifiers and modal connectives resemble 

one another goes back at least as far as Von Wright's 1951 Essay in 

Modal Logic. Von Wright notes that "The logic of the words 'possible', 

'impossible', and 'necessary',... is very similar to the logic of 

words 'some', 'no', and 'all', and attributes this similarity to 

the fact that "...the possible is that which is true under some 

circumstances, the impossible, that which is true under no circum

stances." He calls the subject matter of quantification theory "the 

mode of existence" and includes this, along with the modes of "truth", 

"knowledge", and "obligation", in his list of major modal categories. 

Von Wright's aim was to exploit the similarity he observed by trans

ferring well-known results and techniques of quantification theory 

to modal logics. Our aim is the reverse; we hope our knowledge of 

modal logic can be used to gain a better understanding of quantifi

cation theory. More specifically, we intend to construct many- 

sorted (propositional) modal logics with the same expressive power 

as first order predicate logic. First, however, we discuss briefly 

two earlier attempts along these lines —  the first by Arthur Prior, 

the second by Richard Montague.

-151-
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Prior (in [Prior, 1968a] and [Prior, 1968b]) suggests a modal 

system called "egocentric logic" that looks a great deal like the 

ordinary monadic predicate calculus. Prior's reasoning goes some

thing like this:'1' A distinctive feature of modal logic is that 

sentences are not considered to be true or false, but rather "true 

at a world", or "true at a time". Considered by itself a modal 

sentence is incomplete or "open", but given certain additional 

information it may become either true or false. But we can think 

of other examples of sentences whose truth depends in this way on 

extra information. Consider, for example, sentences whose subject 

is 'I'. At a given instant 'I am sitting1 is true when uttered by 

some people and false when uttered by others. We find it fruitful 

to construct logics whose sentences are evaluated at worlds and 

times, so why not a logic whose sentences are evaluated at people?

Or, stretching Prior's idea slightly, why not allow sentences to 

be evaluated at objects in general, so that 'I am inanimate' is a 

sentence true "at" the Washington Monument? Or (with a little more 

stretching) why not let some kinds of sentences by evaluated at 

pairs of objects so that 'My first member is the author of my 

second' is true at the pair (Scott, Waverly). Continuing in this 

manner we could allow sentences which are true at triples and quad-

^Actually Prior combines twTo arguments. First, that what is 
normally treated as a monadic predicate can be treated as a modal 
sentence to be evaluated at objects, and second, that what is normally 
treated as a binary predicate can be treated as the alternativeness 
relation of a Kripke model. We consider only the first argument.
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ruples, or, more generally, we could allow sentences which are true 

at "assignments", or infintie sequences of objects. If modal logic 

can successfully deal with sentences which are open in the sense 

described, then we might expect it to be useful in dealing with 

open sentences of the more familiar kind, viz., sentences which 

are usually represented by a predicate letter followed by indivi

dual variables. A sentence which is true at all (some) worlds is 

necessarily (possibly) true; a sentence which is true at all (some) 

times is always (sometimes) true. Similarly a sentence true at all 

(some) assignments is universally (existentially) true. Thus, the 

most natural modal connectives correspond to quantifiers, and 

Prior's egocentric logic can be regarded as an attempt to modalize

at least a part of first order predicate logic.
2Montague, in one of his earliest papers, points out many of 

the same similarities noted by von Wright. He observes, for example, 

that the theorems D(A ■+ B) ->■ (DA ->QB) , OA -<->lI1C3A, C J A ( -D-A), 

of common modal systems are mirrored by the theorems Vx(A -+ B) ->■

(VxA -* VxB), VxA -*-> Vx VxA, 3xA<-*- (- Vx-A) of quantification 

theory. These observations lead him to suggest the following uni

form treatment of necessity and quantification. Let L be a 

language with predicate symbols, constant symbols, quantifiers, 

classical propositional connectives and a necessity operator □.

Let a model M for this language by a triple (D,R,f) where 

(D,R) = (D,(R^jR^,. . . . . . ) )  is an ordinary model for pre-

2 [Montague, 1960], which was written in 1955.
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dicate logic and f is an assignment of elements of D to the

variables of L. Let two models for L (D,R,f) and (D',R',f') be

related by Pq if D = D' and f = f', by Px if D = D',

R = R 1, and f and f' assign the same element of D to every

variable except possibly x. Now we can define the truth of a 

formula A in a model M so that the similarity between □  and 

V surfaces:

□  A is true in M if for all M', M P M' implies A

is true in M'.

Vx A is true in M if for all M 1, M H' implies A

is true in M 1.

Thus the addition of quantifiers to a language is really no different 

than the addition of a collection of modal operators.

It would be natural, in light of the subsequent development 

of semantics for modal logic, to try to recast Montague's formula

tion in terms of relations between possible worlds, rather than 

relations between models. We could, of course, just let Montague's 

models be the possible worlds. Then, if W is the class of all

such models, o is a member of W, and V is a valuation which

makes every atomic formula R,x,...x true in exactly those 1 1 n
worlds (D,R,f) such that (f(x^),...,f(x^)) is in R^, then

(W, o, P, P„ , P, ,..., V) is a Kripke model which verifies the 
V1 2

same formulas as the Montague model o. v̂i’ v25••• suPposed 

to be an enumeration of all the individual variables.)

This solution, however, is not very satisfactory, for the class 

of Kripke models we obtain is very unnatural. Instead of writing
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out explicitly the truth values assigned by each V we could have

said that we were interested in all models (W, 0, P, P... , ..., V)
1

such that if (D,R,f) and (D,R,f') are in W and f assigns 

to xi the same object as f  assigns to y^ for all i,

1 _i i n, then for all predicate letters Q, Qx^...xn is true

at (D ,R, f) under V if and only if it is true at (D,R,f) 

under V.

This account is better, but, if our object is to learn some

thing about quantifiers by making use of what we know about modality, 

then it is not good enough. The logic determined by a class of

models satisfying such a complicated condition is not likely to be

a logic we know much about. The problem is that while Montague 

has, in a sense, replaced quantifiers, he has not replaced the 

predicates and variables that go with them. If Qx^.-.x^ and 

Qy^...y are treated as distinct sentence letters then (unless the 

class of possible valuation functions is restricted as above) the

sentence 3 x ,  . .. 3x Qx, . . .x -> 3y ... 3y Ov . . .y will be 1 n l n  y 1 n l n
falsifiable. If, on the other hand, they are treated as the same 

sentence letter, then Sx^.-.Bx^ 3 y 1...3y^ (PXj,...xn A

-Py^...yn) will not be satisfiable. In a logic without variables 

the formulas corresponding to Px^...xn and p>Ti‘‘-yn should 

not both be atoms.

The question of whether quantification theory can be formulated 

without variables and operators which bind them has received a great
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deal of attention.3 The aim of the work that has been done is 

not to replace quantifiers by modal connectives. In some cases, 

however, we can twist it to suit this purpose. In particular, we 

consider in this chapter modal logical version (C and PF) of 

Tarski's cylindrical algebra ([Henkin, Monk, Tarski, 1974]) and 

of Quine's predicate functor logic ([Quine, 1960],[Quine, 1972]). 

Each of these logics is characterized by a class of Kripke models. 

The valuations in these models, like those in the models discussed . 

above are not unrestricted. It turns out, however, that the 

restrictions needed are just those which mark our logics as many- 

sorted. Furthermore, the sorts play a familiar role. Each point 

of the models has a number of dimensions and the sort of a sentence
tdetermines which dimensions affect the truth value of that sentence. 

In fact the logics we construct bear a strong resemblance to Krister 

Segerberg's two-dimensional logic B (which was formulated with a 

completely different interpretation in mind). To bring out this

3In addition to the works mentioned in this paragraph, see 
[Curry, Feys, 1958], [Schoenfinkel, 1924].

4Readers who are familiar with cylindric algebra might object 
that explicit sorting of sentence letters is not necessary, provided 
it is stipulated that for every sentence letter there is some n 
such that the truth of the sentence letter is unaffected by changes 
in dimensions beyond the n'th. This kind of move is legitimate in 
the case of cylindric algebra, because in that case wc are only out 
to show that predicate logic has the structure of some cylindric 
algebra. In this chapter, however, we want to show that predicate 
logic is equivalent to cylindric and predicate functor logic.
This will not necessarily be true under the stipulation mentioned. 
(For example, it will not be true if the truth of every sentence 
letter depends only on the first ten dimensions of a point.)
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resemblance we construct a third logic B* which is a straight

forward generalization of B. C , PF, and B* are all intended to 

be modal equivalents of the classical predicate calculus. In section 

B we describe these systems. In section C we investigate their 

relation to the predicate calculus, and in Section D, we 

consider the problem of axiomatization.

The material in this chapter supports the view that modal 

connectives (construed broadly enough) can do the work of quanti

fiers. Furthermore, it indicates that the modal way of thinking 

can shed new light on predicate-functor logic.

B. C, PF, and B*

1) C.

In Chapter I we remarked that the sentence letters and Boolean

connectives of classical logics can be interpreted as the elements

and operations of a Boolean algebra. But nothing was said about

an algebraic interpretation of quantifiers. As a matter of fact,

it is possible to generalize the notion of a Boolean-algebra in

such away to accommodate quantifiers. One generalization that

will do the job is Tarski's ij-dimensional cylindric algebra (CA) .

The elements of an to-dimensional cylindric algebra are sets of

length-u) sequences of elements from some basic domain. There

are the usual Boolean operations and constants (see p. 11), and,

in addition there is a 'cylindrification operation' for each

natural number k and a 'diagonal constant', D. for eachJ >*■
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pair (j,k) of natural numbers. If X is a set, as the

set of all sequences which are obtained from members of X by

changing at most the k 'th coordinate. D. . is the set of allJ
sequences whose j 'th and k'th coordinates are the same. To see

the connection between CA and classical predicate calculus,

suppose A is a sentence of a predicate language and suppose X

is the set of all sequences (d^jd^,...) which "satisfy" A in

the sense that A is true when d̂  is assigned to v^, d9 to

v2» and so forth. (Recall that v^jV^,... is an enumeration of 

all individual variables of our predicate language.) Then ^(X) 

is the set of all sequences which "satisfy" 3v^A. The diagonal 

elements are needed to express connections like that between 

Pv1v2 and P v ^ .

Before describing our modal formulation C of CA, we 

introduce notation that will be useful throughout the remainder 

of the chapter.

N+ is the set of non-empty initial segments of the non

negative integers. N_ = N+ U . We sometimes identify a non

negative integer with the set of all smaller non-negative integers. 

Thus N is the set of all non-negative integers and for all i, j

in N, i U j = max (i,j). For all k in N, r^ : N -> N is

defined by = J if J  ̂k anĉ rk ^  = k-1 if k 4 0,

r^(0) =0. i is the identity function on N. Finally, if X

is a set of sequences, = {(d,e) : d S x, e £ X and for all

i such that 1 <_ i _< k, d^ = e^}, Eq (X) = X2 and

E*(X) = { (X) : k e  N}.
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Definition 4.1a. L is the N-sorted f-Boolean propositional--------------  c
language with:

(1) sort-j sentence letters P^, for all j in N

(2) connectives * ’ of type r^ for all k in N and .0-ary

connectives cyPe i j f°r in

'Ĉ ' is used as an abbreviation for cj_

Definition 4.1b. If D is a non-empty set, a C-model on D

is an f-classical Kripke-model (W,E,o, c^,...,d^ V)

suitable for L such that c
(1) W = DW .

(2) E=E*(W).

(3) d Cj_ (n) e iff d^ = e^ for all i, 1 <_ i <_ n such

that i 4 k.

Notice that, for any non-empty D, there is a C-model on D. 

If A is a sentence of sort {l,...,n} then the truth of A at 

a sequence w depends only on the first n coordinates of w.

Notation: If M  be the class of all C-models, then ^  = t=̂

and C (the cylindric logic) = MF,) •

2) PF.

Quine's predicate functor logic, unlike CA, was devised

"’We take 'C^' as primitive rather than in order to
insure that all our connectives are Kripke.
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specifically as a solution to the problem of formulating the

classical predicate calculus without variables and variable binding

operators. His language contains the familiar n-ary predicate

letters, and in addition, a finite number of functors which operate

on predicates to yield new ones. For example, ,"1' and ' p' are

functors such that, if P and Q are binary predicates, then

1'IPQ and pQ are also binary predicates. We think of ^ PQ as

the predicate which holds of a pair (x,y) iff both P and Q

hold of (x,y), and pQ as the predicate which holds of (x,y)

if Q holds of (y,x). The language of predicate functor logic,

however, does not contain individual variables. Hence we cannot

write down the obvious axioms which would express these properties.

To get the effect of existential quantification there is a functor

']' such that ]P holds of (x-^.-.jX^) iff for some x^, P

holds of (x_,x,,...,x ). (Notice that if P is an n-arv pre-0 1 n
dicate, ]P is an n-l-ary predicate.)

Our modal version of PF is very similar to PF itself. 

Several of Quine's functors (including 'H1) become ordinary 

f-Boolean connectives and we prefer to deal with ]'s dual instead 

of ] itself. Quine, of course, did not think of his predicate 

functors as Kripke connectives nor of his predicates as modal 

sentences. But our semantics is clearly not far from what he had 

in mind. Furthermore, our modal treatment enables us to describe 

a proof procedure for PF, a task which for Quine was still "a 

major agendum."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-161-

Definition 4.2a. Lpp is Che N+-sorted f-Boolean propositional 

language such that:

(1) The sort-j sentence letters are those of Lc<

(2) The non-Boolean connectives are '[', 1p1, 'P' and

'I', where ' a ' ,  ' V 1 , are type-m; ' p *, ’ P' and

are type-i, '[' is type r+ where r+ (j) = j+1 for all

j in ca. ']' is type r where r (j) = j-1 if j €= N , 

r_ (0) = 0; and I is a 0-ary connective of type 2. ']'

is used as an abbreviation for

Definition 4.2b. If D is a non-empty set, a PF-model on D 

is an f-classical Kripke model (W, E, o, [, ], P, p, I, V) 

suitable for Lpp such that:

(1) N = D̂ ,

(2) E = E*.

(3) d I(n) e iff for all i < n, e. = d.,...— i l+l

(4) d" T(n) e iff e [(n) d.

(5) d P(n) e iff e. = d and for 2 < i < i n  —  —

(6) d p (n) "e iff d P(2) e.

(7) i = {d e w : dp = d2}.

Notation: If M  is the class of all PF models, then [-pp - 1=̂

and PF = L G=-pp) .
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3) B*.

Segerberg's logic B (for 'basic') was devised to provide a
, 6 solution to a problem of Aqvist's in the field of tense logic. In

addition to the Boolean connectives it contains the unary connectives 

'□'> 'CD1, '3', '0', '©'> and '© ' •  Segerberg suggests

that these connectives be read as 'everywhere','everywhere on this 

longitude', 'everywhere on this latitude', 'at the diagonal point 

of this lognitude', 'at the diagonal point of this latitude', and 

'at the mirror image point', respectively. From the truth condi

tions he gives, however, it is clear that another reading is 

possible. We can think of the sentences of B as formulas of 

a predicate language with only two variables, say x and v.

If A is interpreted C(x,y), CJA becomes Vx Vy C(x,y),

03A becomes Vy A(x,y), EA becomes Vx A(x,y), ®  A becomes 

A(x,x) , 0  A becomes A(y,y) and (x) A becomes A(y,x). Thus

B can be interpreted as a fragment of predicate logic. To get 

all of predicate logic we need a way to express formulas with more 

than 2 or less than 2 variables. Toward this end we divide the 

sentence letters of B into infinitely many sorts. We also need 

connectives which express quantification x̂ ith respect to variables 

other than 'x' and 'y'. Toward this end we rename S  by [Q ,

£17 by LU and add the connectives (TJ , 00 > ••• with similar

truth conditions involving coordinates beyond the second. ( |_k|

^See [Aqvist, 1973].
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turns out to be the same as CR of Lc.) We retain 0 ,  but 

©  and O are both dispensable (CJA is UJ • • • [n? A where 

n = s (A) and © A  is. ( D ® A  ). Finally, to insure that we 

can get the effect of arbitrary permutations of variables we 

replace 0  by ©  and ©  (which are the same as p and P of 

LpF). The details are presented below.

Definition 4.3a. is the N-sorted f-Boolean language with

(1) The same sentence letters as Lc>

(2) The type-i connectives ©  , ©  , and (J) .

(3) For all k in N, a type-r^ connective (k).

Definition 4.4b. A B*-model on D is an f-classical Kripke

model (W, E, o, 0  , ID Q>, ©  , 0  , V) suitable for

Lg},c such that:

(1) W = d“ .

(2) E = E*.

(3) [k] = C^, © =  P, 0 =  P (see Definitions 4.3b, 4.2b).

(4) d ©  'e . iff e^ = = d^, and for i > 2, ei =

Notation: If M  is the set of all B*-models, let

and
Notation: The interpretations for the connectives in C-models,

PF-models and D-models are uniquely determined from the points
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in those models. Hence if it is known that M is a PF-model

(C-model, B*-model) we represent M by (W^, 0̂ , V^). If M

is known from context and w £ W , then we write 'w F A' for 

(M,w) f= A.

C. Equivalence with Predicate Logic

A prominent difference between C and PF on the one hand, 

and B* on the other, is that the former have sentence constants 

(i.e., 0-ary connectives), while the latter does not. The work 

that is done by the unary connective ' (D 1 in B* is done in 

PF by the constant 'I' and in C by the constants ' *  .

This difference, it turns out, is not merely a matter of style.

For I and the d..'s take us beyond Pred C, while (T) does not.

More specifically, I and the d_'s give the effect of adding

the special binary predicate, '=' ('equality’) to the language 

of Pred C and endowing it with the expected properties. Since 

this modification of Pred C was not discussed in earlier chapters 

we make a short digression to do so now.

Definition 4.5a. ^pcE t̂ e (°ne-sortec^ predicate language

with no connectives except the Boolean ones and the quantifiers 

and with the special binary predicate letter '='. '=xy' is

normally written 'x=y'. For all n we assume that P^, P^, ... 

is an enumeration of the n-ary predicate letters of Lp(-E'
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Definition 4.5b. 

relation in LpCg satisfying:

(1) <p h X = X.

(2) X = Y h Y = X.

(3) X = Y Y = Z h X = Z.

(4) A(x,x^,.. .  >x n ) > x  = y |- A(y , x ^ ,....x̂ ) for all formulas A.

Definition 4.5c. A PCE-model is a classical model M = (D, P, a) 

suitable for L (see p. 18 ) such that is {(d,d) :d £ D}.

We omit the proof.

Theorem 4.2.

a) hc V  *-pcE*

b) '“P F ^ V'PCE‘

c) ^  r'

C, PF, and B* are alike in that sentences are evaluated at 

sequences raLher than assignments. In proving Theorem 4.2 we make 

use of a natural correspondence between sequence talk and assign

ment talk. g^ is a function from C-models to PCE-models (or 

from PF-models to PCE-models or from B*-models to Pred C
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models) such that if M = (D ,o,V), g^(M) - (C,P,a) where

C = D, P̂ 1 = ((d, ,...,d ) : for some e" in DU , e G V (P .)’ j 1 n J
and (d ,...,d ) is an initial segment of e} , and a(v.) is the I n  1
i' th coordinate of 0. g2 Is a function in the other direction

such that, if M =  (C,P,a), g'^M) = (Dw, o, V) where D = C,

o = (a(v^), a(v2),...) and = { (d-[_ > d2’" " ̂ : (d^,...^) G

P1}}. It will always be clear from the context what kind of models 
J
the arguments and values of g^ and g2 are intended to be.

Notice that g^g^M)) = g-L(g2(M)) = M-

To prove the theorem, we must find functions from our special

propositional languages to the ordinary predicate languages and

back, which correspond to these translations of models. Clearly

our functions should take the sentence letters P. to P. v ...v .
3 J i n

But n-ary predicate letters of Lp££ anc ̂ Lpred C C&n a^so

followed by other strings of variables. We will have to show that,

in each of our propositional languages, the effect of relettering

the variables in Pn v,...v can be obtained by applying connectives 
J 1 n

to Pn.

are positive integers, then 't . .A' denotes the< tcL, . . . ,~n )
sentence c , . . . . c (d ,m+l A . . . A d  , nH-n A c . . . cm+1 m+n k, k i n1 n
(A A d.,m+l A ... A d  ,m+n).1 n

Property. if d” = (d1,d2,...) and ~e = (e^e^...) are members

of W such that e. = d, ,..., e = d and A is a sort-n 1 k, n k1 n
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sentence of Lj-,, then d \= k >A 8 ^ A ‘
1 ’ ' ‘ ‘ ’ n

Proof of a. Let f„: LDn„ -* L be defined as follows.

J "1 kn+l
If A = vk = v.} f2(A) = dk>j.

If A = -B, f2(A) = -f2(B) .

If A = B a C where □ is ' A ' ,

Claim: For all A in L,,,

iff g2(M) 1= t2(A).

Proof. A routine induction on A using the property of

T. , . . mentioned above.< k.,...,k )1 n

The other direction is easy. Let f :̂ L^ -► L. 

follows:

h<?P-*y
- ^ V V r

fi(dj,k> " - A-

f x (B □ C) = f;L(B) □ f x (C) if □  is 'A',

fl(_A) = "fl(A)- 
f ^ A )  - Vvfc ^(A).
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Claim: For all A in Lc and all C-models M, M 1= A iff

g*(M) 1= f1(A).

Proof. Another routine induction on A.

From the corollary to Lemma 1.23 it now follows that t~c ̂ F p CE-

Proof of b . Instead of showing that l=pF is strongly similar

to f=pCE directly, it is convenient to show that they are both 

strongly similar to an intermediate system. In Lpp, both variables 

and variable-binding operators are done away with in favor of pre

dicate functors. In the intermediate language LppV we keep the 

variables, but eliminate the binding operators.

Definition 4.6a. The alphabet of Lppv consists of atomic

predicates which we take to be the predicates of kpcp predicate

functors, which we take to be the connectives of Lpp, and

individual variables, which we take to be the individual variables

of LpCE- The class of n-ary predicates of LpEV is defined

inductively: All n-ary predicates of LpcE are n-ary predicates

of L If P = DP-...P where □ is a type-r connectivePFV 1 n
of Lpp, P1„...,Pn are j p ,. . . , j^ary predicates of LpFV>

respectively, and r(jp,...,jn) = n, then P is an n-ary pre

dicate of Lppy* LpFv is the set of all strings of the form 

Px^...xn such that P is an n-ary predicate of LpFV and

x ,...,x are individual variables. We can easily give an inter- 1 n
pretation of LpFV in terms of models for LpCE*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-169-

Definition 4.6b. If M is a PCE-model and A is in I 

then A is true in M (written: M f= A)^ if one of the

conditions holds:

1. A = P? or A = P V  . . .x and M f= A.J j 1 n

2. A = Ixy and M /= x = y .

3. A = P pV  . . .x and M H ^ x  x . . .x .I n  n 1 n-1

4. A = p Pnx . . .x and M (= Pnx9x x . . .x .

Al*
M' h Pn+1-

a'(x) = a(x) whenever x 4 x^.

and M f= RmXl . . .x , M M
L IllctX V.1U3U^ TT'

L‘’,Xmax(m,n)
M t= P“xn • • .x .1 n

9. A = (Rm Pn)x1 .. .x 1
or M f= • * ,xn •

10. A = -Pnx1 . . .x and not M )= Pnx-, . . .x .I n  I n

An easy induction establishes that if M = (D, P, a), M' 

(D, P, a ’) , and for 1 £  i £  n, a'(x.)=a(v.), then

^We are safe in using the word 'truth' and the symbol 
because the two definitions for Ht= A coincide when

‘PFV’
following

• • >x ,. n
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If r C Lppv and A E  I,ppv let T l=ppv A iff every A is 

true in any PCE-model'in which all the members of F are true.

The function fp: LpCE is defined by induction.

* fp(Ixy) = x = y.

f , (PPn x . . . . x  ) = f_(Pn X . X - . . . X  ) .l r l n  1 2 3 n

f ([Pn 1 x ...x ) = f (Pn 1 x ...x

_,n+l

the first variable not among x , .. . ,x

Proof. By induction on the number of functor-occurrences in A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-171-

M 1 }= f (Pn+1 x , . . . x  ) for all such Mj i.e., to M t=1 O n
V x 0 fi(pU+1x0...Xn). But Vx0 fl(Pn + 1 V ..Xn) is f X (A) *

To define our translation in the other direction it is con

venient to introduce some notation.

Definition 4.7a. if 1 <_ k _< n and P is an n-ary predicate

of l p f v ’ let
1) a. pn = P (n"k)+1 (Pp)k_1 Pn .

uk
a list to the k'th place and Sk has the effect of adding a second 

occurrence of the first variable in a list in the k'th place, in 

a sense which is made precise by the following lemma.

1) M F O / V , .x iff M h Pnx, x . . ,x x . . .x . n k 1 k-1 k+1 n

2) M I- O - V ^ . . . .x iff M Pnx„ . . .x, x x . . .x . n 2 k 1 k+1 n

3) M != S, P V  . , k 1 ..x , iff Mf= PV...X, x  x  . . .x n-1 1 k-1 1 k n-1

4) w V ' .x ) = Pnx, x . . .X x . . .x . n k 1 k-1 k+1 n

Here and in what follows positive superscripts indicate iterations. 
Thus 1D 2A' means ODA, and 1 (O Q )  A 1 means G O d Q a .
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5) fjfe-VSlj...*,) - pn*2 - - - V l V l " - Xr,-

6) - - *-(*„ - V ^ V ' - V i 1-

(Of course, x, ,,...x and x. .. .x . in the right hand side ’ k+1 n k n-1
of 1-6 are empty if k = n.)

The proofs of 1-6 are straightforward.

Now we define f2= Lpc£ ->■ Lppv by induction on the number 

of connective occurrences in the argument.

• f 2(x = y) = Ixy.

Suppose f2 is defined on sentences of with k or fewe

connective-occurrences and that A and B are such sentences 

x r ..xn , f2C

If D  is 'A', 'V', or f,(ADB)
^n _ rn m.

f2(^xA) = • f2(A). Otherwise let k^,...,k^ be a list (in

increasing order) of all the i's such that x_̂ = x, and

let (z ) be the sequence which results from1 n-p
(xp,...,xn) by deleting the x^ 's. Then

f , 0 * A >  - ](sfc_--.slt a"1 p") V V p  and
- P

£2(¥xA) - ](s ...sk p") xr ..V p -
2 p i
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Notice that if A is any formula of PCE, the free variables 

of A are included in the variables of f2(A).

Claim 2. For all formulas A of PCE and all PCE-models M,

M (= A iff M h f2 (A) .

Proof. By induction on the length of A. We do only two cases.

• Suppose A = B A C, f2'(B) = Pn x^ . .xn, f2(C) = Rm y>y . .ym>

M (= B iff M h Pn x^. . .xn and M t= C iff M h Rm y^. . .ŷ .

Then M M  iff M PU x, . . .x and M h  R1" y,...y . Thisi n  1 m
holds iff M t= Pn x, .. .x and M|= [ r” x,...x y ...y , i.e.,I n  1 n 1 m
iff M h  (Pn A [ V )  V V l ' " ym (= f2(A))-

Nov; suppose A = 3xB , f2(B) is as above and M t= B iff

M t= f 2 (B) . then there are two subcases:

i) x is not among x^,...,xn> In this case M h  A iff 

M h B iff M h f2(B) (=f9(A)).

ii) For some k ,...,k , (p < n) x = x = ... = x = x.
1 p - kl k2 Rp

Let z.,,...,z be the sequence obtained from 1 n-p
x^,...,xn by deleting the x^ 's and suppose that

11 j
k, < . . . < k .- Then M h  f0(A) iff, for some1 p 2
M = (P̂ jj a') such that a' agrees with a^ except

possibly on x, M' = S ...S O  ̂pn x z. . . . z (since
2 p i  . n'P

x is not among z. z ). By Lemma 4.1a, this holds1 n-p
iff there is such an M 1 such that M' j= P x, . . .x . By1 n
induction hypothesis this holds iff there is such an M' 

such that M' h B, i.e., iff M = 3xB (=A).
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By the corollary to Lemma 1.23, Claims 1 and 2 establish

We now work toward proving that f= ^  /=

Definition 4.7b. If A is a sort-n sentence of Lp]

i \ ,n „(n+l)-k . k-1 n1) a^A = p (Pp) A if k < n

2) -1 n
°k A

k-1 n 
= k

3) TkAU = 1 0k+i(IAff(ii An).

4)
T <V .. Tk Tl n Cn-1+1"

Lemma 4.lb. If An E lpf and A1

1) (d,,.. ,dk,...)^ \ An iff (dj

2) (dr-- ,dk,...) H - In
°k A iff (<

3) (dr ... ,dk,...) h TkAU iff (dt

4) (dr--- ,dk,...) K
V ,..,k >' n

k ’ l’‘‘ k-1’ k+1’‘

+  •■ ••• +  +  •++!' •••) >■ A"- 

" A “.

ff (d d d d2,...)».A:
1 n

(The notation w |= A was explained on p.164). Notice that if A is

Tojlefine the function from LpFV to Lpp, recall that every pre

dicate of Lppv is a sentence Lpp. If A = P°, let f2(A) = A.

let f (A) = T , Pn+1.
-1 -n+1 2 <kl’ ‘ ’ ’kn+l>
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Claim 3a. For all PCE-models M, and all A in M 1= A

iff g*(M) f= f2(A).
Proof. It is easy to prove by induction on the complexity of 

Pn that M h  Pn v1*>*vn iff §2^) ^ pI1' The claim follows by 

Lemma 4.1b and the definition of

Define V  V  * LPPV by f ^ V p 0, f 1 (Pn+1) = P»+1 . .v^.

Claim 3b. For all PF-models M and all A in Lppi

M (= A iff g^M) h fp(A) .

Proof. g*(M) t= fx(A) iff M (= g!j(g*(M))) 1= f2fx(A) by 3a.

But f^(f^(A)) is equivalent to A by Lemma 4.1b, whence the claim 

follows.

By the corollary to Lemma 1.23, claims 3a and 3b establish that 

h ^  t= .PCE PF

Proof of c. As before, it is convenient to introduce some

defined connectives.

Def:inition 4.7c. If An is a sort-n sentence of

1) . n 
°k =

0 (n+l)-k (q -  0 }k-l An ±f R < n and

ak(An A k k (p V -p ) otherwise.

2) akL A” k-1 n 
" °k A •

3) Tk A" * °n+l °k+l ^  V l  A”-

4) \ k r .. An = T T T An . .,k >A Tk Tk ,+1 k +n-l A • n n n-1 1
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Lemma 4. lc 1-4 of Lemma 4.1b hold when AU is a sort-n

sentence of LD,V.B5C

f : Pred C is defined as follows:

If A = P°, f2(A) = A.

If A = Pn v ...v , f (A) 
J kl kn 2

• If A = B D C  where O is 'A', * \i ', or then

f2(A) = f2(B) O  f2(C).

• If A = -B, f2(A) = -f2(B).

• If A = VvkB, f 2 (A) = (kJf2(B).

If A = 3 vkB, f2 (A) = - jk] -f 9 (B) .

Claim 1. For all A in Lpred c and all Pred-C-models M,

M f= A iff g9 (M) F f9 (A) .

The proof of this claim is similar to proofs of the previous claims.

fl: LB* Pred C is defincd by induction:

• f.(Pn) = Pn v ...v .1 J J 1 n
• ^((^A) is the result of interchanging all occurrences of

and in f^A) where n is the sort of A.

• ^ ( © A )  is the result of interchanging all occurrences of vp

and V2 in f^(A).

• ^ ( © A )  is the result of replacing all occurrences of v2

by v 1 in f^A) .
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• fx( 0A) = Vvk fx(A).

• f (A n  B) = f (A) □ ^(B) if □  is 'A', ’V', or

• fx(-A) = -fx(A).

Claim 2. For all A in LgA and all B*-models M, M M  

iff g*(M) (= f1(A).

Proof. Induction on A.

By the corollary to Lemma 1.23, Claims 1 and 2 establish 

that t-B,.,̂ l=pcE.

D. Axiomatizations

Our aim in this section will be to axiomatize 

and hfi.,c. There are, of course, many axiomatizations of Pred C 

and PCE. The representation theorem for cylindric algebras 

(discussed, for example, in [Henkin, Tarski, 1961]) provides an 

'axiomatization' of cylindric algebras. And there is a rather 

complicated completeness proof for B* in [Segerberg, 1973].

It would probably be possible to adapt any of these results to 

the frameworks we are considering and to use translation theorems 

like those of the preceding section to extend them to PF. We 

choose not to do this, however, for two reasons. First, having 

used the idea of a many-sorted modal logic to give a unified treat

ment of the three systems in question, it would be desirable to 

show that the completeness arguments of Chapters I and II can be
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modified to suit our purposes here. Second, since our motive for

studying these systems was to add to our knowledge of the older

systems, it seems ill-advised to base our axiomatizations upon 

the ones already given.

What we shall do, therefore, is to list certain principles 

which are valid for the interpretation we have in mind and prove

that this list is sufficient. No attempt will be made to find the

most economical set of axioms or even an independent one. We 

begin with some definitions.

Definition 4.8. If A is in Lc (LpF> Lg*) then A depends

on coordinate k if k > 1, A + J- , and one of the following

holds:

A = pn and 1 < k < n.
J -  “

A = BAC, A = BVC, or A = B ■+ C, and either B or C 

depends on coordinate k.

A = -B and B depends on coordinate k.

A = c ^ B  or A=| j ] B  and B depends on k and k 4 j •

• A = d.. and k = i or k = j.iJ
A = [B and B depends on coordinate k-1.

A = ]B and B depends on coordinate k+1.

• A = I and k = 1 or k = 2.

A = and B depends on k and k 4 2.
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• a = P Bn or A = (x)Bn and either k = 1 and Bn depends on

coordinate n or 2 £ k < n and BU depends on coordinate k-1.

• A = p B n or A=( x ) B n , n ^  2, and either k = 1 and Bn

depends on coordinate 2 or k = 2 and Bn depends on coordinate 1.

A = Pb\  ® b \  Db \  or ©  B'*' and B^ depends on coordinate k.

The terminology here is suggested by the following easily proved 

facts.

Lemma 4.2. a) If A does not depend on coordinate k then 

for ail dk, <£, M j . - A - l ’ V  1££

(11  V l '  i ’ dk+ l ' " ' ) ^ A '
b) If ^ ^  ̂An depends on j then j € {k^,...,^}.

1’' * " ’ n

Definition 4.9. If A is a sorl-n sentence of L PF ’
Lgs,c then A = T< 2 4 2n > A‘ If r is a set of sentences,
then r *  = (A : A G F} .

Axioms and rules (where n is the sort of A and i < n)

T<kl, ...,k ^ >*(x2) _    ^
~n+p

<T3>

(T4> T<k,...k > A A T <k,...k > B H,- T<k,...k >(AM>I n  I n  I n
(Cl) F , k k ) A A implies
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F t, , . v C.A h A (provided no
N  k i-l’"'ki+ l’" ” kn > 1

sentence in the conclusion of this rule depends on k ).

(C4) d. , , d I- d. .j,k km, j,m

(C5) T, . ..
(C6) d k H t- T< k k > di ’ Provided n_>max(i,j).

i’ j cl’*'* ’ n 1,J

<c7> T< k,,...,k ) A|- T< kl,...,k. ..t.k. > ciA •I n 1 l-l n-1 n

(PF1) T(k k ) A h A implies
0’* ‘ ‘ ’ n

T , k j ]A i- A (provided no sentence in the conclusion
1’* ' ' ’ n

of this rule depends on 

(PF2) <f> j- . ± ) 1.

(Pf 3 ) t(

(PF4> j , k ) 7 ^ 7( i , k ) 7 '

(PF5) T< kl,...,k > A ’ dk.,j'-T< k 1,...>k. > A -1 n i J 1 l-l J l+l n

(PF7> T< k ,  k > P A - " - 7< k ,,k ,k >'I n 2 1 3  n

! l  k ) LA T<k9,...,k >'
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(PF9)

(B*2)

(B*3)

(B*4)

(B*5)

(B*l)

(B*6)

(B*7)

(B*8)

(B*9)

T<kn,...,k ) A h T<kl5...,k > ]A*O n I n

o±a. (D A, °j°k (D ^a”1 A °±°k CD A

whenever i < j < k.

o.o. 0  o . o . A, o.o . (T) o . o A 1- o o . (£)a. a a
i  j w  j i  k j ^ j k  k x  i k

whenever k  < i < j .

o.o. 0  o. o. A, o o. (T) o . o a f- o.o 0  a. o, ai j ^ j i  k ] j k i k j l

whenever i < k < j .

A h Ok O (Do V 1 A implies k > A *"
i J J i 1’ ' ‘ ‘ ’ n

T<k.,...,k. , j ,k ,. .. ,k >A -1 l-l l+l n

r ' T< k,,...,k > A h A  lmplies1 n

T , ^ ^  ̂—  Q] — A I— A (provided no sentence in the

conclusion of this rule depends on k^).

® A T<k , >'n 1 n-1

T<t,,...,k > ® A -, h T <k,,k1,...,k >A -i n  I 1 n

T<k, k,....,k >A h T <kl....,k.,...,k - A-1 2 n 1 j n
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Definition 4.10. is the smallest classical consequence

relation on Lc satisfying Tl - x4 and Cl - C7. ppF is the 

smallest classical consequence relation on LpF satisfying 

Tl - t4 and PF1 - PF9 • f-g,v is the smallest classical con

sequence relation on satisfying Tl - t 4 and B*1 - B*9.

Theorem 4.3. = hc, Fpp = f=pF and ^  .

To prove soundness (i.e., that C k , K  C |= , and
0 — L r r  — i rr

l-g.,. C is routine. To prove sufficiency, assume F A

(F t/pp A, F A). We must construct a model M such that

M (= T but, for all B G A , M # B.

Definition 4.11. A theory (F,A) of Lc is h -saturated

if it is maximal |~c consistent and if x̂   ̂ * c.A £ T
V "  j ”  n 2 

implies that, for some k.', x , , , A £. T. A

)-pF-consistent and if x̂  ̂  ^ j ]A G f implies that, for
1’‘ ‘ ’ n

some kQ , x̂  ̂  ^ ^A E F. A theory (r,A) of is
05 ‘ ' ‘ ’ n

F^.-saturated if it is maximal f-„...-consistent and if

, v - 0  - A C  F implies that, for some k.', 
n J

For all subsets F and A of L (Lp f > Lr*) >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-183-

Proof. We prove the lemma for F and A subsets of L^. The 

other cases' are proved similarly. Let A^, A^, A^,... be an

enumeration of L^ such that if = ^ k k ) ^i^ an<"*

i —  n the" Al+l‘ T<k ,k. ,m,k ...lc >B- F»r s «’e ”1 x—1 i+l, n
such that m is an odd number, m ^ {k ,...,k } and, for all1 n
k < i, A^ does not depend on m (such an m will always be 

available because each Â_ depends on at most finitely many 

coordinates). We define a sequence of theories &S

follows.

Fn+1
U (A } if (F U {A }, A ) is ^-consistent i n  n n n C

otherwise.

/A if (T U {A }, A ) is I- -consistent I n  n n n C

^A U {A } otherwise.

Let r =  u  r.
i < 0) 1

the rules preserve virtual finiteness. Hence 1-̂, is finitary

(see p. 23 ). From this it follows easily that (r+ ,A+ ) is

maximal |-£ consistent (see Lemma 1.9 ). All that remains

is to show that (r+ ,A+ ) is ^-saturated. Suppose

T, , , c. A is A . Then if A S F+ , A must be in
{ k^,.••,k^ ) j n n n
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in T If this were false, then we would have r A H A •n+2 n+1 n+1 n+i
But m is an odd number, so nothing in T* U A* depends on it, and

By Cl, therefore, T ,,A H A  ,,, which violates the consistency 1 ’ n+1 n n+1

Lemma 4.3. If T* \f A* (r* f/pp A*, r*.b*B * A*) then .

r* a* (r* is«pF a*, r*b«B*A*),

Proof. If the hypothesis is true, then (F*, A*) is consistent, 

so by the previous lemma it can be extended to a saturated theory 

t+ = (F+ , A+). We will use this theory to build a model which 

shows F 4 A*. Consider the following binary relations on posi

tive integers

i -'"g* j i < j and, for all A in > A £ t

implies O.O. fl) G.^G.^ A t  t+1 J J 1
j < i and j i

From axioms (C2-C4 (PF2-PF4, B*2-B*4) it follows that

^ is an equivalence relation. Let [i] be
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the equivalence class of i under this relation. Let D - {[i] : i

is a positive integer}, and let 0 = ([1], [2], ... ). Finally,

let V(P^) = {(Lk1] , [k2] , ...) )Pj e t + }- Notice

that whether a sequence belongs to V(P^) depends only on the first

n places of the sequence. Hence M = (D̂ , o, V) is a C

(PF, B*)-model.

Claim. For all sort-n sentences A in Lc (Lpp> ’

(f^] , [k2] ,. . .) f= A iff T(k ;<>k >A G t + .-
l’ ’ ’ ’ n

Proof. By induction on the length of A. A few cases will

serve to illustrate:

If A is a sentence letter then ([k^] , [k9] ,.. .) 1= A iff for

some [jx] = [k^,..., [jj = [kn] and

T, . > A G  t+ . By Axiom C5 (axiom PF5, rule B*5) this
' " ’In } +happens iff x̂  k k  ̂A G t .

1* *' * ’ n

• If A = d. . then ([k. ], [kj ,...)}= A iff' [k.] = [k.] ij 1 2 1 J
iff d. , G t+ . By C6 this holds if X, . , , d. . G t .k.,k. J \ k.,•••,k ) xj

3 3 I n

If A = ]B. where B is sort n+1, then x̂  k k ^A G t+
_l_ "l n

implies (by x3) that x̂  k  ̂] - B ? t . This, in turn,
*1 ’ ”  ”  n +

implies that for all k^, x^k k } _  ̂^ ^e_

applying x3, x̂  k k  ̂B G t+ for all kQ. By induction
O’" ” n

hypothesis, then, ([kQ] , [k^ , .. ., [k^]) = B for all k^; i.e.,

([k1],...,[kn]) = ]B. Conversely, if x^k k  ̂]B ^ t+ ,
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then T, , ] - B G t . Since t is saturated this means'k,»••■>k '
+ +T, . v- B S t for some kn . Hence T, , , B f t<k^>•••,k ) 0 \ kn,...,k )O n O n

and, by induction hypothesis, ([k^],...[k^]) # B; i.e.,

(tk],...,[kn]) M ]b .

From the claim, it follows that ([ 1], [ 2], . . .) }= An iff

T, s An &  t+ , iff (by Tl) An £ t+ . Hence M /= A iff\ 1,2, . . .n /
A S t+ . This proves the lemma.

Lemma 4.4. If (r,A) is consistent so is (r*,A*).

We prove this lemma for PF-consistency. The other systems can be

handled similarly. Suppose T* l-pp A*. Since hpp is finitary,

A, , .. . ,A B, ,..., B for some A , .. . ,A and B , . . . ,B1’ 5 m PF 1 n 1 n 1’ n
in r* and A*, respectively. We know each A^ is of the

form T. . . \ A~ and each B. is of the form\ 2,4,...,^. / i J

T<2,4,...2t > Y '  By T2 and T4’ then T<2,4,...2k> (<A1A ■••A A m)J
-> (B^V ... V B^)) h </> where k = max ({sp : 1 £ i <_ m} .

{t. : 1 < j < n}). By k applications of rule PF1,

]k ((A, A . . . A A ) ->• (B V . . . V B )) /- (p . By k applications of 1 n 1 n

Axiom PF9, k > ((Al V  ^ (B1 Bn}) h ^ '
By Tl, (A1 A • • • A A^) h (Bp . VB n) which violates the con

sistency of (F ,A) .

To complete the proof of Theorem 4.3, suppose T A . By 

Lemma 4.4 , T* F A*. By Lemma 4.3 there is a model
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M =  (D̂ , (d1,d2,...), V) such that M h T* and. 

in A*, M #  C. Let M* = (DU , (d2>d4>...) V). 

M* (= A iff M (= A*. So M* f= T and, for all 1 

M* # D.

, for all C 

Clearly 

) in A ,
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Remarks on the Literature

In Chapter II we can distinguish two ideas, each of which 

has been discussed in recent literature. First, there is 

the syntactic point that a formal language in which every 

connective applies to every sentence is a poor imitation of 

natural language. It is better to rule the awkward strings 

ungrammatical than to force an interpretation on them. Second, 

there is the semantic point that the truth-in-a-situation 

of different sentences may depend on different features of the 

situation (and that dependence on inappropriate features is a 

common cause of the failure of a connective to apply to certain 

sentences).

The syntactic point was made by Arthur Prior in Appendix 

C of [Prior 1957]. In fact, Prior considers a restricted

language for necessity which is the same as our L . He calls 

S5 n L the system 'A', and guesses at an axiomatization for 

it. From our characterization of , it is easy to check

that Prior's guess is correct. (This also follows from the work 

in [Pollock, 1967].)

The semantic point (that logics should be capable of dealing 

with sentences whose truth values depend on different features of 

the situation) was made by Dana Scott in [Scott 1968]. Scott 

recommends a kind of model similar to those introduced in 

Sections C and D of Chapter 2 here. His models have only one
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kind of point, but each point has several coordinates, each of 

which stores a different kind of information about the situation. 

Richard Montague in [Montague 1968] discusses the same models 

as an example of the kind of system that can be subsumed within 

his very general framework for pragmatics. As an illustration he. 

outlines a semantics for languages to deal simultaneously with 

tenses and pronouns in which each point in a model has a speaker- 

coordinate and a time-coordinate. Other examples have cropped up 

in more recent writings. Krister Segerberg ([Segerberg 1973]) 

calls the logics determined by this kind of model nn-dimensional" 

(where n is the number of coordinates of the points) and proves 

a completeness theorem for the "basic" two-dimensional logic B 

which is discussed here in Chapter 4. Hans Kamp ([Kamp 1971]) 

discusses two-dimensional systems for dealing with constructions 

involving words like "Now", but points out that the two-dimensional 

treatment in this case is merely a convenience. Frank Vlach 

([Vlach 19 73]) considers certain natural extensions of Kamp's 

logics in which the two dimensions play an essential role.

Finally, David Kaplan ([Kaplan 1973]) considers a logic for 

demonstratives which has (among other special features) four 

dimensions. [Kaplan 1973] also contains a discussion of a problem 

analagous to our "incompatibility of choice sets".

It is easy to see that any logic which we call many-sorted is

many-dimensional. For we can identify a point in a D-model with

the sequence (W/E.....,W/E.) where ( j j  ) is anJ± Jn I n
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enumeration of the sorts. The converse of this, however, is not 

true; for the interpretation of connectives and sentence letters 

in a many-dimensional model may be unrestricted. Roughly speaking, 

a many-dimensional, but single-sorted logic is one in which the 

truth of a sentence depends on several features of the situation, 

but the truth of every sentence depends on all these, features. For 

example, consider a language with both the traditional tense 

operator TF1 (read "It will be the case that...") and the 

traditional possibility operator '<̂ >' (read "possibly..."). If 

we believe that what is possible later might be different from what 

is possible now (for example, if we take 'possible' to be 'techno

logically possible'), and if we believe that what comes later might 

possibly not come later, then every sentence in our language would 

depend on two coordinates —  a time coordinate and a world coordinate 

We would then then have a two dimensional, single-sorted logic.

If we believe that possibility is not time-dependent (for example, 

if we take 'possible' to be 'logically possible,' then it would 

be more plausible to include in our language sentences of two 

sorts: world-dependent sentences and world-and-time-dependent

sentences. The connective '<£ ' would apply to either sort of sent

ence and the result would always be a world-dependent sentence. We 

would then have a two-sorted logic with one "two-dimensional sort" 

and one "one-dimensional sort". The combination of several sorts 

with several dimensions illustrated by this example also occurs in 

the systems discussed in Chapters III and IV.
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The treatment of tenses in Chapter III shares many features 

with various treatments in the literature. The distinction between 

past and present perfect is brought out in [Reichenbach 1947].

The relation between a sentence and its progressive form is discussed 

as an example in [Scott 1968]. Many of the other points here are 

made in [McCawley 1971], although truth conditions for the tenses 

are not given explicitly here. Finally, arguments showing the 

weakness of the traditional Priorian tense logics as representations 

of English tenses have recently been given in [Needham 1975].

Needham, however, opts for a system in which quantification over 

times is allowed in the object language.
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