THE DOMING RELOTION:

FLATTENING & TUD-DIMENDIONGL LIBICL

41 Introduction

This paper concerns formal sysitens containing a connective O
with the truth definition?

{x, vyl AL Ve v, 238
Such systems can be regarded as nmodal logics with the familiay
relational truth condition:

wEA 14 Yy DwRv D owiEh)
where the worlids w are ordered pairs and the relation R is
defined by the condition (x%,yXR{x’,y”> iff y=x’. The relation so
defined shall be called the doming relation. It iz exactly the
reilation one tries to preserve in the game of dominos. The
dominoe relation features in a nunber of recent discussions of
“two-dirensional®™ modal logics. Section two of this paper
surveys several of these applications. Section three describes
conditions on a relation R that are necessary and sufficient for
R to be regarded as the domino relation. This makes possible a
*filattening” of two-dimensional logics based on  the domino
relation: the completeness problem for the two-dimensional logics

is reduced to that {for the one dimensionasl systems in which R

satisfiss the appropriate conditions. In section four such &

iThis paper is the result of a six year correspondence with
LLioyd Humberstone of Nonash University. It has benefitted in
both substance and styvle from from nany of Professox
Humberstone’s ideas. It has also benefitted from comments of Hit

Fine.
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icgic is presented and axicmatized. The completeness proof
enmployas two technical novelties--a technigue of D.M. Gabbay for
constructing irreflexive nodels is adapted to the construction of
models satiafying other conditionsa, and a Henkin-atyle procedure
is used to build a model as a whole rather than +the worlds
comprising the nmodel. The final section ocutlines ways in which

the system can be either refined or sinmplified.
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An attractive idea that has recurred several times in the
iiterature on nmodality?Z is  that many f{perbaps alll) kinds of
neceasity can be construed as relativizations of a single
absclute notion of necessity. Something is physically necessary
if it is absclutely neceassary that it follows from the lawas of
physics; legally necessary, if it is absclutely necessary that it
follows from the legal code; and so on. But if modalities are
given a relational semantics of the kind now commonly adopted,
this idea is doomed to failure. Suppose, for exzample that ¢ is
some sort of “relative™ necessity operator. Then according to
the reductive achene

DA = (LI,
where I is an absclute necessity ocperator and L is a sentence

constant expressing an appropriate set of laws. Now suppocse O

satisfies the T schema, i.e., FOADS . {This is surely

2In [Humberstonel this idea is traced to various writings of

4. R. Anderson, 5. Kanger, and T. Smiley. Iin i¥an Fraassenl it
is sttridbuted to “the nominalists and subsequently the empiricists™.
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appropriate for sgme relative necessities.? Then in particular,
oo, .., HOILODLY T But in any reasconable modal logic this
implies ., and conseguentliy that A=A, i.e., that absclute and
relative modality collapse. Semantically, the picture is the
following. If A = LR thern whelA I£f viEd for all L-worlds v
such that wiv {whers B iz the acpessibility velaticon foor D2, So
we can interpret O by an acceasibility relation R’ such that =R’y
iff =Ry and v=L. But if R is reflexive fas would be sxwpected i
$ satisfies the T schemal) then nk. For every x, so RY=H.

These and similar difficulties with the modality-reduction
project are noted by I.L. Humberstone3 and B. Van Fraassend., The
two authors offer a similar diagnosis and remedy.S The
gifficulties arise because we are assuming that O and L have
“one-dimensicnal™ interpretations. Aliow Ttwo-dimensional®
connectives and constants and the project can easily be made to
succeed. Humberstone’s remedy employs the domine relation
directly. Consider a relative necessity operator O interpreted
b'v the accessibkility relation R. Let {(x,y}RDIR 1FF ¥Yeoiy,zikEh, and
iet v be & sententiszl constant such bthat (s, wikby 1FF  Ruy. Thew
fum, wielirodSy IFF YoiRveoiyv,22EA). Taking & to be one-dimensional,

avid taking the truth of ose-dimensional  formulas toe rest on

Z{Humberstonel
4 [Van Fraassenl

S0ther remedies ray alac be possaible. Wicdzinierz
Rakinowicz, in correspondence, attributes +to Lars Bergstrom the
idea that, when OA®»A obtains, the reduction of relative necessity
should be given by ORf = Z{LBRI&L rather than OR = D{L3A}.
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second coordinates gives the desired reducticon of O to O plus
constant.

Yan Fraassen’s remedy appears more drastic. He suggests
that OA should be rendered L+ where + iz ithe Dinary bwo-
dimensiomal connective with truth conditions

(u,yi¥ERsR iFF Wail {yv,2iER O {n,2)FRE ¥,

s, viFEfl is to be understood as saying that the proposition which
A expresses in the context of worid = would be true in the
circumstances of world vy. i.et us use the notation [Alc to
indicate the proposition that A expresses in context ¢. Then
{GAJe is true in circumstance w iff [Alec is true in all ithe
circumstances in which [Liw is true. Row supposes L expresses,
in any world, the physical laws of that woxrlid. Then OAlc is
true in circumstance w iff fAlc is true in all the
circumrstances in which the physical laws of w hold. OA, in octher
words, always says that what A& says is physically necessary.

Van Fraassen appears to provide a reduction of relative
necessities to a special conditional, rather than & reduction to
& special necessity operstor. Van Frasssen’s + cannol be defined
in terms of Humberstone’s [I. But there is a connection between
themn. A formula is valid, for Van Fraassen, if it expresses in
aevery worid a proposition true in that world. Thua validity is=a
truth at all pairs {(w,wi. This means that r+3 is valid iff
Oiy2AY is valid. Similarliy, conseguence is preserxvation of fruth
at pairs {(w,w}, So the logic of r+A and {24} is the same {(as

-

long as we do not permit nesting of O or .3
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Humberstone’'s &, on Van Frasssen’s understanding of the two-
dimensiocnal semantics, does express a kind of necessity. 57
sverywhere expresses a proposition that is true in exactly the
circumstances in which A would expresa & proposition that is true
in all circumstances. Identifving a proposition with the set of
circumstances in which it is trus, we can say that A everywhere
expresses the proposition that A is necessary. As Van Fraassen
notest, DA is definable as @A, where!
(x,y)=dB iff {y,yrrsE (0B expresses the proposition that B is
true.l
{n,ys=EB iff W i{x,ziRR  {IB expresses in every world the
proposition that B is necessary in that world.?
But similar definitions in the other direction are alsc possible.
For example: DA = @4, where!
ixn,yreoB ifdf {x%,x3EH {HB expresses in any world the

proposition that B is true in that world.:

The dominoe relation appears in a guite different sort of
rale in Jonan van Benthem’s recent book on tense logic. VYVan

Benthen notes that a relational franme {@,Ry can be viewed as a
directed graph with nodes in W and edges in R. But the sane

graph can be {at least partially} described by (X,3) wvhere X is

61 use %, #, and T for Van Fraassen’s &, W, and E. The
notation for the last two and foxr € follows [(Segerbergl. whers
such operators had previcusly been discussed with suggested
readings “at the diagonal point on this longitude™, “everywhere
on this longitude"™ and “at the diagonal point on this latitude”.
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the set of edges and 3 holds between vl and w2 if vl terminates
in a point from which v2Z departs. In this case X can be taken to
e a subset of WIW {viz., the set of puirs {w,v? such that thers
is an edge leading from w to v) and S to be the domino relation
on £. The switch from (W, R} to (X,3) involves a kind of radical
switch of metaphysical perspective. Connections between objects
become objects themselves. The domingo relation plays an
important role in this shift.

The domino relation--or a generalization of it--appears in
yet ancther guise in W.Y. Guine's predicate functor logic. {Ses
for example {1 and £3.3 In predicate functor logic, the
variakbles and functors of ordinary predicate logic are replaced
by three or four special “functors™ mapping predicates to
predicates. The predicates and functora of predicate functor
iogic can be regarded as formulas and connectives of a many-
dimensional modal logic. {See [ . The functor 3 {“ocrop™?
that replaces the guantifiers has the following truth definition:

{HEp e, X238 4FF Sxwmel {31l,...q %0410,
ty of ceourse, corresponds to the existential guantifier. The

systen could just &z easily have been formulated in terms of the
(8l,0se,85n2E08 35F Yunel (ul, ..., 32meilba
i1f we vrestrict curselves to a dyadic predicate logic in which

the truth values of all formulas iz determined by at wmost the
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last two indices?, this can be written:
{1l,=22¥R08 idff Wx3E ixE, x31EA.
Ss  the domino rxelation also underviies the interpretation of

guantifier functors in dyvadic predicaste predicate functor logic.

B ST TEL TR AE I e T e i L T Y S e S0 e i, e s it i . st i s . et W W . A O W i ) o L i W

For any non-empty set D, the doming structure_ _on I is the

pair (DXD, <) where (x,y><{x’,y”"? iff y=x'., A surrogate doming

structurg f{or a surrogate sitructure for short}) is a pair (W, R2

W i s e i e s S s i S S e . s e st . s SRS W WA o . .

were W is & nonempbty set and R is a binary reliation on W
satisfying the following conditions. {We write uRvRw to indicate
that uRv and vRw.}

51 {(single intermediary) %u,v ZHlw uRwRv

IS {immediate successor}? YulviuRvy ~A Ywi{uRwlIvRwl }

TS {transitive successor? YadviuRv & YwivRwIuRwl 2

Condition SI says that for any two members of ¥ there is one and

only one point that lies “between"™ themn. This is egquivalent to

the conjunction of two-connectedness {(Yu,vBwi{uRwRv}) and pon-

incestuality8 {(uRwRv & uRw'Rv o =w* 3. Two-connectedness says

7Such a system could be obtained, for example, by taking the
two-place pradicates, boolean functors, guantifier functors, and
permutation functors from some version of Quine’s systenm.
Suine’s “pad"™ functor could not be included szince it generates
predicates of more than twoe places.

&The term “incestual® is from [Chellasl p 82. uRwRvy means
uRw and wRv. Similar abbrevistions asre used subseguently.
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that every pair of points is related by RE. Distinct points w
and w’ are said to be “incestuocus*™ if they have a commron parent
and & common child. Kon-incestuslity sayvs there wsre no
incestucus pairs. IS says that every point has an immediate
suCcessoyr, i.€., & sucoessor that is related to all the points to
which the original point is  related. This condition is
equivalent to the condition: uRV 2 3w uRwRV {(where uRV indicates
that ulv for all v in V). When V contains only one element, this
is just the familiar condition of density. Thus IS can be viewed
as a generalization of density. To explain TS5, let us say that u
is transitive through v if vRwIiuRw. In & transitive frame each
point is  transitive through all of its sucecessors. T3 says that

in surrogate frames each point is transitive through some of its

BUCCEEB0OTS.,.

It is easy to check that domino structures are a species of
surrogate frames. Let (DXD,<? be the dominc structure on D,
Given any two points {(x,¥y) and (®2’,y’) the unigue intermediary is
the point {y,n"2. If {x,v3 iz relsated to all the points in ¥
then everything in Y must have vy as & first coordinate. IJo
{%,y3RB{y,y3RY. Similarly, for any point ((x,y3, the point {(y,y}
is & successor of {z,v¥v} through which {(x,v? iz transitive. So

{DXD, < mests the three defining conditions of surrogate frames.

Hore interesting is the fact that every surrogate structure

is really a domino structure. To show this we first demonstrate
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that a number of properties follow from the three given in the

definition of surrogate structures.

lLerma 1. Let {¥W,R* ke a surrogate frame. Then K satisfies the

following properties.

1. Separation of reflexives! xEx & yRy & =Ry o ==y

2. Seriality: %¥xu 3y =Ry

3. Reflexive successors! %x Jy (x2Ry & yRy?

4. Immediacy of reflexive successors: xRy & yRy & =Rz o ¥Kz
5., Uniqueness of reflexive successor: xRyRy & xRzRz o y==z
6. Reflexive intermediaries:! =Ry & xuRwRy I wRw

7. Guasi-transitivity: =RyRyRz > =Rz

&, Reflemive predecessors: ¥x Zy {(yRu & yRy

%. Unigueness of reflexive predecessors! yRyRx & zRzRx o y==z

10. Common successors: xRu & yRu o (xRv = yRv)
Proof
i. Suppose xRx, xRy and vRy. Then % and ¥ are both

intermediaries between x and v. JSo by SI, =x=y.

Z. Seriality is an immediate conseguence of TS5,

3. Let ¥=i{y:xRy}. By IS Zy =RyRY. Since zRy, ¥ must be a member

of Y. Since yRY, vRy.
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4. Suppose xRyRy and =zRz. By IS5 there is a y° such that =Ry*Ry

and xRy’Rz. But now vy’ and y are both intermediaries between x

and y, 8o by SI y'=y. Since y’Rz this means yRz.

5. Suppose xRyRy and xR=zR=z. By the immediacy of reflexive

successors yRz. By the separation of reflexives y==z.

&. Suppose xRy and xRwRy. By reflexive successors there is a w’
such that xRw’Re”’. By the immediacy of reflexive successors
w Ry. So w and w' are intermediaries of x and y and, by 5I,

w=w’, Substituting identicals we get wRw.

7. Suppose xRyRyRz. By TS there is a point y’ through which = is
transitive. By seriality, y’ is related tc some point z’. Since
% is +transitive through ¢y’ and =Ry'Rz’ we have xRz’. By
reflexive intermediaries, then, vy 'Ry“'. By unigueness of
reflexive successors y’=y. So x is transitive through vy and

wRZ .

&, Consider an avbitrary point x. By SI there iz & unigue z such
that =RzRx. By reflexive successor there is a y such that zRyRy.

By the immediacy of reflexive succesaors yRx. So y is a reflenive

predecessor of #.

9. Suppose yRyRx and zRzRx. By SI there is a unique w such that
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%2RwRy. In addition there is =a unigue v such that yRvRz. KRow
wRyRyRv, &6 by guasitransitivity wRv. Similarliy vRzRzRx implies
vR¥. This means that v and ¥y are both intermediaries of w and =.
By 85I, wv=v. Substituting identicals we get yRz. By the

separation of reflexives this means that y==z.

10. Suppose #xRu  and  yRu. By SI and property & there are
reflexnive intermediaries w, between x and u, and w’, between y
and u. By property 9, w=w’'. Now suppose xRv. w is a reflexive
successor of ®, 50 by the immediacy of reflexive successors wRv.
By gquasitransitivity, yRv. Similarliy, yRv implies wRv, which
implies =Rv.

-

Theorem 2. Every surrogate structure is isomorphic to a domino

an . s s S o " - o

structure.

Proof Let M=(W,R} be a surrogate frame. We show that ¥ ia
isomorphic to the frame determined by the domino structure on the
set U of all w in W such that wRw. We use the notation betiu,v?

to denote the unigue w such that uRwRv. et £:DXD -- W be

defined by f{u,vi=beti{u,v’.

a. £ ias onto.
Let wi¥l. We know w has & unigue reflexive predecessor u and a

unigue reflexive successor v, Hence ufbh, vV and f{u,vi=w.
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b. £ is one-one.
Suppose fix,yi=Ffiz,w). Then by unigueness of reflexive

predecessors x=z and by uniqueness of reflexive successors y=Ew,

C. ix,¥? € {z,w} if and oniy if fix,y) R f{z,w).
i. Suppose {(x,¥3 < {(zZ,wl. Then y=z and we have the situation

plctured beliow.

By quasitransitivity, f{x,y3Rf{(=z,w)

ii. Buppose fix,y? R fiz,wl.

Let t=beti{y,z}. By quasitransitivity £{(x,y)Rt and tRf{(z,w). By
reflexive intermediaries tRt. By separation of reflexives y=t=z,
and so (x,y) < (z,w).
®

Surrogate structures can be characterized in other wavs as
well. Consider the following conditiona.

1. Branch points! =Ry » xHz = 3x? (48x? A HY Ry A mtTRz

Z. Right-identical successors: Y Hy xRy A WziuBz = yRzi)
Then each of the following sets of conditions characterizes

surrogate structures:
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a. Single intermediary <+

successors + branch points;

. Right-identical successors

Proof:

Z above. Branch points follows

prove right-identical successors,

ilet v be its zrefliexive successor.

BUCCBEEEOYS any suocCcessory of x

guasitransitivity any successor of

show that the sets a and b each

identical successors alone implies

transitive successors, so the

sufficient. From the

successors,
it remains onliy to check that a
Take an

arbitrary point

Suppose xnRz. Then x “branches™ to

“pranch point™ vy’ that intervenes bebtween x and its branches.

v* were distinct from y, then vy’

internediariss betwesen =

Since =z was arbitreary,

=

The dominoe sitructures discussed

full dominoe structures;

graphs are the substructures

guasitransitivity <+

conditions
fact that =a

and gquasitransitivity,

and v.

of these,

reflexive

+ single intermediary.

First note that surrogate frames satisfy conditions 1 and

from generalized density. To

take an arbitrary point x and

By the immediacy of reflexive

is - successor of y, and by
vy is a successor of =n. Next
implies 38I, IS and TS. FRight-

both immediate successors and

in b are clearly

contains 35I, reflexive

it foliows that a implies TS.

implies imnmediate successors.

% and let vy be its reflexive successor.

v and =2, so there must be a

if
iteelsf

and vy would both be

S0 yv'=v and therefore ywR=.

v is an immediate successor.

above might be regarded as

the structures that represent directed

which we may regard as
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partial dominoc structures. Thus a partial domino structure is a
pair (¥,<) where W is any non-empty set of ordered pairs and <
is the domino relation on W. Let us define a partial_surregate

structure to be a structure (W,R) satisfying the following
conditions.

NI: nRyRz A ®FyYRz I ysyt

OBy wRy A ¥Ry T {xwRz o x®*HRz)
NI iz just the wnoerincestuality half of B8I, merntioned above. o8
{Peooamoy sucoessor’? says that 1F oxw ard w? Share ong SUCDesSsor,
they share &1 their SuCCesscrs. L8 implies the analopous
congition on prederessors, For suppose  that v ang e have &
common predecessc H, and suppose that v alsco has predecessor 2.
Then % argd 2 share the successor v, and by 5, sirnce » has v! as
& SUTCeEsSBcr, z must  have yv' Ffor a sucopsscor as well. Mote that

part 18 of lsmmma 1 ensures that surrogate structures are paritial

surragate structures.

It ds  routime to verify that &1l partial domine structures
are partisl surmrcgate structures. The other direction is

patablished Delow.

IThecren 2. Every partizl surrogate structure is isomorphic to a

partial domine structurse.

Te prove theorem 2 we took the elements oult of which the

domine strucrture  was constructed to e the reflexive members of



the swroepate structure. In & partial swrogate structure these
mwed  wot  be  present. We shall irnstead idderntify the basico
glements with paires of sets of members. Iv graphical tevrms the
mode X im to be idermtifiesd with the pair (5, 8) where P is the set
of edopes leading to x and § is the set of edges leading Fromn He
Suppoase (W, R) is a partial surrogste structure. For ary
will, the successor-set of w (S{(wi} is the set of vil Foor which

whv. The predecessgr-—sgt of w {(Fiwr) is the set of viW For which

viw., 8w intericr node is a pair (P, 8 such that for sone p@El ard
some sBE8, P=R{sf) ard S=B{p@. By the common predecessor and
ooy Buoressor cordit ions, it Follows that 1F (B8 is an
irterior node then Tor any pilF and any =588, B=5i{p arnc F=ig).
Ov imitial node is a paiv (8, {w}k) where w is & member of W with
we predecesscors and a Tinal node is a paily {{wk, £ where w 1% &
membaey of W owith no sUCCeEsSB0rsS. et D be the set of all interior
modes, initial nodes and Tinal nodes and Teh L=l {{R, 8y, (Y, 8%
£ DXD: SP” 7 @3, Intuitively, ¥ is the set of pairs of nodes
%,y for which an edge leaves from z and leads Lo v. it snp”
above is non-empty, it must contein exactly one member. {If
there were two then (F,5) and (P',5°) would both be intermediate
nodes and there would be twe intermediaries betwesn the nenbars
of the non-empty sets P and S’.) We show that if < is the domino
relation on U, {#,43 is isomorphic to (W,R:. For sll pairs
({P,S83,¢(P*,5°33 in U, let £CLP,8,(P*,8°2) be the unigue menber
of ST,

@. F oim ome--ong.
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Supposs FOOR, 83, 07 8 3 r=F G, Ti, (B, T2 i=n, Siweoe wiS, P=P{ixd.
Since x:f7, G=Rixl. Heroe P, Gimilarly, siviee xE{F° and =ni@°,
S =8{x3=T". If P {and hence & is enpty then (F,5) and (&,T:
must ke initial nodes and S and T must be singletons. But since
they both contain x this ensures they are identical. If P {(and
hence &) is non-empty then {(F,.3) and &,T) are interior nodes and
S and T are the successor-sets of members of P and @, so if P and
& are the sanme S and T are alsc the same. Similariy (F’,37) and
{@°,T'y are either both final nodes, in which case they are both
({x}, o, o they are both ivterics nodes, in which case Y oand OF
predecessor—sets of  members of B8 oard 7Y, and hence ddentiosi.
Thus (P80, (FY B = {{8, TI, (G, T,

e F odm owmbo.

Suppose wik There are fTour Ccases.
{1 w has a predecessor o &nd &8 SUCCEBER0T 8. et BB BYLEY Dbe
iw)  Bipr, Pluer,8ip. They: LA, By, IBY BY ) € u and

£{{P,3),{(P",5"))=w.

{ii) w has predecesscr B, mut no successor. Let P,S5,P',3’ be

Pi{w},S{pr, (w},a. Thigys TR, By, P B £ U and
£(L{P,S (P’ ,583=w,
{iii? w hss successocr 35, pbut no predecessor. isimilar to the

abovel .

¢ivy w haz no predecessor and noe auccessor. Let P,S,P7,8° be
@, Lwdr, {wld, @ Thew (P8, {8,833 ¢ U and f{{P,52,{(F",3 32=w.

o, w{fd if argd only iF FleBRBFif.

Lot msm{{f, 8), (B, 80, @={{3T),{Q",T 0, fiwr=x and fid)=y. i.



17

Suppose =« (8. Trher (82,8 b={0,7) awd {(F*',3%) is arn irntericr vode.

Sirmoe xEFY, SY=LH{xl. Bot wE7 ard T=8' sc v must be a successor
C“?‘ Ha
ii. Bupposs #Hy. #iEIFY arnd ® has & sucresscyr 8o (BT, BT must be

i

(]

£

&y intericre node. Hewnce BY=8i{ix) amd PYP=0{y}., Bimilariy, {7 an

¥ Das & orederssscy” BO 16, Ty must be an interice node. e
G=D{y) avd T=5{xl. Thus (G, Ti={F 8%, i.@., =i,
B

The construction sbove, unlike the previocus one, actually
establishes a proper embedding of the surrogate structures in the

“real®” ones. Consider the two graphs below:

The "node structures” describing these are distineot, but the
“edge structures®™ describing them are identical. The construction
described asbove always results in & structure like the one on the
right, rather +than the one on the lefti. Thus the construction
here actually shows that every partial surrogste structure is
isomorphic to a partial domino structure with no branching from
initial nodes and no branching to {final nodes. {Hote that it
would not e possible for the construction always to select the
structures like those on the left, for that would reguire that
partial surrogate structures satisfiy a sentence saving that there

ie at most one initial node and at most one final node.:?
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In the last section it was shown that the full doming
relations are just the relations satisfying SI, IS and TS.
Conseguently, the problem of axiomatizing Humberstone’s [ is now
reduced to the problem of finding modal axiomas corresponding teo
these conditions.9 The only condition that presents
gifficulties is the non-incestusiity half of SI. There do not
appear to be any simple modal axionms that preclude the existence
of incestuous pairs in relstional frames. The sclution described
here is an adaptation of an idea used by D.H. Gabbayl( to

construct irreflexive frames. There is no axiom that precludes

the existence of reflexive points in models, but Gabbay shows

that there are rules that do so. The axiomatization offered herse

will use similar rules for non-incestuality.

i.et X be the usual languasge of modal logic, with pil,p2,...
as sentence letters, we —, awnd b as primitive connectives, and
sy e By amved  as defined connectives.

A {two-dimensionall} frame for abscliute necessity is a full

domine structure {(DXD, <}, A {(two-dimensicnal’ model is a triple

(DXD, <,V where (DAD,<) is a frame and ¥V is a valuation, i.e., a
function that assigns a subset of DED to sach sentence letter.

The smocdel (DED,K,V3 is based on the frame (DXD,<>. Truth at a

pair, truth in & model and validity in & frame are defined in the

9Similarly the logic of partial domino relstions is the
logic of relations satisfying HI and P, Since every tree
structure satisfies these conditions, the logic of partial

dominoc relations is just X.

10 [Gabbay}
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usual way. {In particular, the clause for O can be expressed:
fx,yr=l8 iff Y= {y,ziRALD A surrogate_ _frame for abscluts
necessity is a relational frame (W,R) satisfying 51, IS, and TS.
A surrogate model is a relational model based on a surrogate
frane. Truth at a point, truth in a surrogate model and
validity in a surrogate frame are defined as usual. By the
results of the previocus section, the lagic determined by the
ciass of two-dimensioconal frames is the same as that determined by
the class of surrogate frames.

CnidAl,...,Anl abbreviates the formula
GLALAGCAZA.. . G{AR-3A0ARY .. .23, (niAl,...,And is true at wl if
and only if there is a chain wlR...Rwn+l such that Ail,....8n are
true at wZ,...wn+l, respectively. The logic_ _of _absoclute

necessity, AN, is the logic determined by the axioms and rules

Axioms: Al. All substitution instances of tautclogies.
AZ. DCADBY o (DADDBI
A3. BOA T A
Ad4. DDA o DOUOA
AS, DDA o DDA

ABn. DACAGEI AL ..ADEn o SIDAGAONLIA. . . A0RNR2

Rules: By, If A and =328 then -2
Nec. If A then A

RNI. If +~0nfAl,....An-1, Anal{BoUgiaAD{-BoO-g33 o O
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then O LALl,eeeeAn-1, AnadBAC-BYI I C {provided

g does not occur in Al,...z.An, B, or C.J

Sgundness. Every thecorem is valid in the class of all surrogate

Do R L s e

Froof: Let M={W,R,¥) be a surrogate model. The truth of Al and
AZ in M is guaranteed by the fact that M is a vrelational model.
The truth of A3, A4, and AS is guaranteed by condition 3%, {51
implies that every point is accessible in at most two steps from
any other. This means that if OOA or O0O0OA is true anywhers, then
A is true everywhere.? The truth, for all n, of Aén follows from
+the fact that B satisfies the right-identical sucCcessor property
of the previous section. {Suppose that the antecedent of A6 is
+true at w. Let w' be the right-identical suCCess0r of w. Since
all the successors of w are successors of w’, w’ verifies
5831, ..-.0An. Since nll the successors of w' are successors of w,
w’ verifies [AU. Hence w verifies the conseguent of A6.> Thus
all the axioms are valid. Furthermore, it is clear that MP and
Nec preserve validity.

A1l that remains to be shown is that RNI also preserves
validity. Suppose some instance of the conclusion of that rule
is false in the surrogate model (W, R, Vi, Then there are points
Mi,...,%n+i,y and y’ in ¥ such that x1Ru2ZR...Rxn+iRy, =®%n+iRy”’,
A1,...,An are true at %x2,....%0+1, o is false at %=1, B is true at

v and B is false at y’. Let Y be the set of all points related
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to xn+l at which B is true and let ¥' be the set of all points
related to xn+l at which B is falise. Now sgince {(W,R,V) satisfies
noen-incestuality, no point can be accessible from something in ¥
and something in Y~'. That means we can let ¥’ assign all the
successors of Y-points and none of the successors of ¥ -points to
the sentesnce letter g. If ¥’ agrees with ¥ on all sentencs
ietters other than g then (W,R,V’} will make 81,...,An true at
B2, resxn+l, © false at xl and DH{BOOg) A~ D{-Boal-g! true at =n+i.
Thus (W,R,V¥'? will faisify the hypothesis of RNI.

Sufficiency Every finite set ia satiasfiable in some surrogate

Proot. Formulas of the form ¢EA0-BH are specigl. If A is the
special formula OHAC-B and g is a sentence letter, then Algl is
the formula O{B20grAO{-Boil-gi. A set [ has the NI _property if
whenever & £ I for A special there is some sentence letiter g such
that Algl £ i The idea is to build a canonical model from
maximal consistent sets with the NI property. The KI property
will ensure that the nodel satisfies non-incestualiity.
Constructing the canonical model out of NI asets, however,
reguires the availability of “new” sentence lstiers. The
problem is analogous to the problem of providing “witnesses®™ for

existential formulas in completeness proofs of predicate logic.

This accounts for the Tsimultanecus" construction of the worids
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of the model mentioned in the introduction.
a countable seguence of {not necessarily distinct) sets of
formulas and R is a binary relation on natursal numbers that doesz
not branch to the left, i.e., 3Rk and iRk implies i=3.

Suppose H={(W,R} is a Henkin systen. & partial_descriptien
af H from Wi is & member of the smallest set containing: liz:ll
conjunctions of formulas in Wi 2¥A1} formulas of the fora
ArlBlae. . A08m, where B is a conguncticorn of Fformulas in Wi and
Flyeraqsbir are partial desoriptions of Frgmn Wi, o . 0 Wy
respeectively For Hlg...qkn successors of i,

Mow  suppose o a  lopic L plosed  under BRI s glivern. Hodm

descripbicon of H

&
oot

comsistent {iw L) if, Foor a&il i, svery pariti

From Wi ig consishernt. Hoodiwm gupangabkle if: 1) Wi is empty For
&311 But Fimitely mars 13 £ AR3 dmplies Wi and W3 are not emphy;
33 thevre are countably marny senbternce letters that do wot coouws in
arry Formula in HWisidwd, H is saturated if: iiFor all i, Wi is

maximal consistent: 2Z¥For ail i, Wi has the RKI property; 2311

G34Wi then, for some 3, iR3 and AfW3. H is an extension_ _of the

Henkin system (U,5) if UitWi for every i and SE&ER.

Lenna 5. Every consistent expandable Henkin system has a

saturated sxtension.

Procf. Suppose (U,8) ias a consistent expandable Henkin aysten.

Let {A1,ni},82,n23,... be an enumeration of all the pairs {(A,n?

such that 4 is a formula and n is & natural number. We construct
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the appropriate (W,R} frem (U,32 in stages. At =ach stage i we

consider adding &i to Wni. More specifically, we proceed as

foliows!

iy {W0,ROX={U,3)

ii) Suppose (Wn,Rn} has been constructed and that (A,m) is the

n+l’th pair in the enumeration. Let {W*,RK’» be the Henkin systen

obtained by adding A to Wam (leaving Rnn and Wnk, for k#n,

unchanged’.

Case ay (W’ ,R"? is not consistent. Then {Wn+l, ,Bn+li={¥n,Rn.

Case b)Y (W’ ,R’) is consistent and A is not of the form B or
4BAG-B. Then {¥Wn+«l,Rn+«lli=(W'R°}.

Case o f{(W',R’3 is consistent and A=0B. Then {Wn+il,Rn+l} is
obtained from {(Wn,Rn) by adding B to Wnm, adding B to Wnk
for some k such that Wnk is empty, and adding the pair im, k3
to the relation Rn.

Case d {(W’,R°}) is consistent and A is special. Then {(Wn+l,Rn+l?l

is obtained from (Wn,Rn) by adding both A and Algl to Wnm where g

is a sentence letter not occcurring in any formula of UdWmisi{uwk.

This construction clearly ensures that for svery n {Wn,Rnl

rerains an expandable Henkin-system. we muat check that
consistency is presserved at every stage. Suppose {(Wn,Rn} is
consistent., 7€ {Wn+l,.BEn+*13 is obtained under case & oy Coase )

above then it is consistent by definition. Suppose {(Wn+1,Rn+ll
is obtained under case o« and that it is inconsistent. Then for
some i there is an inconsistent partial description of

{@n+i,Fn+1» through i. We can think of sach Henkin system as a
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collisction of trees and available nodes. {¥n+i, FRn+i: is
cktained by adding a single availakle node to the end of one
branch of (@' ,%°2. The only formula in the new gnd nede is ©
where ¢ was already in the o©ld end node. IJo every partial
description of {(Wn+i,Rn+i} is alsc a partial description of
{@”,K"3, and (W ,R"y is not oconsistent. Finmliy suppass
{(Wn+i,Rn+1) is obtained under case d and that it is inconsistent.
Let I be the inconsistent partial description, suppose O is &
description of H from Wi, and let Ki,...sA58 be the seguence of
nodea on the path from i tom {(i.e., i=kiR...RRa=m’. We can
assume D is of the form ¢CaiCl,....Ca-1,0asalglil, where sach Ci
Cigi{al i & cownjuncticn  of  Tormulas  irn WHE arntd  partial
descripbions from W3 Ffor  RKIRZ and a#ki+l, and Ca is & partial
description From Wm. IF 0 is imcormsistent it Follows by RNI that
Sal01,....0a-1,CaaRl, which iz & pardtial pdesrrigpbion  of (WY L RYS
im  alsmo inconsistent. Thus consistency is presevved In 8very
CHRBE.

Mo let WismldkWeirniwd, W={Wi,WZ,...3 and R=UlRnin<wl. We
show that (W,R} is a saturated Henkin system. The only property
that reguires proof is that each Wi is maximnal consistent.

Suppose Wm is not maximal, i.e., for some formula A, AfUnm
and ~AdWn. {A,m} and {-A,m? both occour in our enumeration of
pairs, say at positions = and y. So it was inconsistent to add A
to Wam  in (Wx,Rx) and it wss inconsistent to add -3 to Wym in
{(Wy,Ry». Since the construction is cumulative, at stages =z

greater than = and y it would be inconsistent to add sither A or



25
~A to Wzn. Let U and D’ be the two inconsistent partial
descriptions showing this fact. By adding conjuncts from D that
are missing in I’ and vice versa we can insure that I and I are
alike except that one contains an occurrence of A where the other
contains an  ocoourrence of -4, Furthernore the formula E that
results from substituting a tautoclogy for A at that position is a
partial description of (Wz,Rz) and hence consistent. To mee that
this is not possible recall that every extension of K is complete
for some class of tree models, Since E is AN-consistent there is
& tree model that verifies E and the thecrems of AN. E
“describes™ this nodel just as it describes (W=,Rz). In fact
those portions of the twoe structures described by E must be
identical. The point in the tree model corresponding to Wzm must
make either A or -A true. So it must be consistent to add either
A or -A at the appropriate place in E,. Thus (W,R) is maxinmal

consistent and hence saturated.

is the triple (N,R,V) where N is the set of natural numbers and
Y¥i{pr=Inil: pi¥ni. & routine induction sstablishes the folliowing

analog of the familiar result about canonical rodels.

lLemmae &. If H={H,R,Y) is the model determined by a saturated

Henkin systen then (H,ixeA iff AfWi.

From this lemma the following result follows.
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Theorem__7. Every extension of K closed under RNI is weakly

complete for a class of tree models with +the property that for

every world w the set of formulas true at w is an NI set.

Fraoof . et L be an extension of ¥ closed under RRI and let & be
an L-consistent formuls. Let W={({A},&. %,...3 and let R=&. Then
{W,R» is an L-consistent Henkin system. By lemma 5, (W, R} pan be
ewtended to a saturated Henkin system (W ,R”). By lemma &
R’y determines a model {(N,R’,V) that satisfies A. The model
generated from (N,R’,¥? through 1 is the reguired tree model .

The main obiect of study--the logic AN--is an extension of K

closed under RNI. But surrcogate models are not trees. It will be
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Theorer _7. Every extension of X closed under RNI is weakly

complete for a class of tree models with the property that for

every world w the set of formulas true at w is an NI set.

Froof . Let L be an extension of K closed under RNI and let A be
an L-consistent formula. Let W={({A},& &,...7 and lst R=@. Then
{#,R) is an L-consistent Henkin systen. By lemma 5, {(W,R}) can be
extended to & saturated Henkin system (W ,R7:. By lemma ©
{W*'R*: determines a nodel (¥,R”,¥: that satisfies A. The nodel
generated from {(N,R’,V} through 1 is the reguired tree nodel .

The main object of study--the logic AN--is an extension of K
cicsed under RNI. But surrcgate models are not trees. It will be
necessary to add some new points and merge some of the old ones
to transform one kind of model into the other.

t.et A be an AN-consistent formula. Let ¥={¥,R,¥) be a tree
model such that (M,w0des  ard  For a&ll wy {Hewi=fy hazn  bhe NI
mropET iy . Fay each W i¥ i et twi= {FrwEhY. Let
wiml{HBElwl PN OCI D0 tw ! P G0 ODEwi 3.

Claim: wl is consistent. Prootf. if not, then
PBE en e AEE D LTI A e o ATCRACGDE Ae . 0 ADDRY Wi e Bii,ewas B¥

Iodw twis Fy 81,08 ang HENeo,

et

£C1,...,00R, and ODL,..., 0Dk are a
TR A o e ALBR DD~ {00% Aw e » ADCRACD L AL o o A0DRT . HMEre
Cim {THI R A v o AT ACD  As o - ATDRY £ Twi. Hut R o= Pt im maximal
commistent  seg O3 £ twi Fooe 1$i€wm, 003 A .« AlCRACDI AL . 0 AGDR £

bwia By M1 awnd A, T L Ae o o ADTE ACD I AL . - A0DH £ Twiy st Iy H6

SLD{0 Aw a e ALY ADD L AL - L ACDRY D iwmi, Further agplication of A21 and
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ME O yiglds  G{OCIa.. . ADCRACDL AL .. Aa0DRI¢iw], which viclates +the
consistency of iwi.,

Bow for all w in ¥ let ¥ ke 2 maximal consistent extension
of wi. A routine induction establishes that if & is fuily_ modal
v, then A{# if and only if Afiwi. For any special formula A, A
and Algl are fully modal, and &0 each W will be NI. Note also
that if SAfilw! then [DA~AfH, The @'s are to bhe added to the
model as immediate successors. More precisely!

W= WM EIwidy,
FYv= R OU {lw, @ Iwilr U {{F@,vIiwi and wivy U (@, %) twikt
WP Amie Wigm) U {Wtwid amg ofiwi
PEY e BT Y L WY )
Recall that for wil jwi={f:idM, wikEd}. It is convenient to extend

this notation to W’ by stipulating that lwi=w for w £ W' —i.

LEmma B, (0 wikA iff Afiwl.
Proof. By formule induction. We do the case A=0B. Suppose
first that (M’ ,wis=lB. There are two cases to consider.

a. wiW. Then for all » in ¥, wR'x implies (¥ ,x):B. Since ROR’
this means that for all 2 in W wiwx implies (M’ ,u)EB. By
induction hypothesis wRx implies Bfixi, LY we implies
MynirB., Hence (M, wislB, i.e., DBfiwi.

. wiW ~¥W. Then w=¥ ¥For some will. (B, ¥:=0B implies (M’ ,x23=E

for all =x such that ¥R’'x. But ¥ is related to every ¥ such that

vR'y s0 vRy implies (N',y3EA. By induction hypothesis vR'y
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impliss Afiyi. Siwee HERY, viW and vRy implies Afivyi, i.8.. VvRy
implies {(M;yiFA. Hence (H,vikA, i.e., OAlivi. BHut siwmce ivi and
¥ agree on fully modal formulas OALIVE.
Now suppose OBfiwi. FMopain there sre Twe Cases,

s, wiW. Then Bilwi implies i#, w208, which impliies that, for
all x in W, wRx only if (M,x)=B, which implies that, for all = in
W, wRx only if Bil=xi. We almo keow that 0Bfiw! dimplies BEE, and
that if wiW the only R’ successors of w are the R-successors and
W . Hence for all = in ¥, wR % only if Béixi. Boy dwgduction
mBypothesis this means wl'y only iF (MY, wiFB, i.e., R ,wielB,

be wik., Ther wsV for some viW, TBiiwi implies  OBEwv. The
reazcming of case a above shows that viRx owmiy iF (M, xieB.  But
every R’ -successor of u is alsc an R’-successcr of v sc this

means YR x only if (¥ ,x¥eR, i.e., (B ,¥i=0B.

One consequence of Lemma 7 is that (M7 ,w0:=A. Anocther is that,
for ail fully modal formulaes B, (M’,x)k=B iff (M7 ,¥)E=B. The model
must bhe modified further, however, before it can be proved to be
a surrogate model.

Let ¥ ={(W’'’ ,R**,¥"’> be ithe model generated from ¥’ Lhrough
wii, For all v and w in ¥ 7, let vaw 1if arnd anly iFf u ard v verify
exactly the same formulas in M'. = is  an sguivalence relatiorn.
et T3 he  the eguivalernce colass of w  under o and iet
Wemd Ll swiW "3, Let Vei{pl={iwl:wiW 3. Let [vIR+{wl if and only
if, for =il B, (M’,vr=iB implies (M’ ,wi=B. Then M ={(W¥+ R+,V+3 is

a filtration of M*’ through the class of all formulas {in the
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sense of iChelliasl, piOi:. It foliows that (B+,{wilrsA ifd
(M’ ,wi=A. All that remains is +to show that M+« is a surrogate
anodel.
1) ¥+ is generated through [wl3
23 For all w in W [WIR«IWl.

Proof. Since WRW, (H,W:slB inplies (H,wiEA.
33 R+ satisfies IS,

FProof. If %iW then (£l i= the immediate successoe of Ixi.
Foy supposs (MY, 11 =20B, Since xuR’'%, (MY, WixB, and so [RIR+«IFI.
IF, ive  audodihior, EndR+Lyd thern (M, [¥3 0B implies (M’, IxI)=DR
{because {x} and X} agree on Ffully modal formulas?, which
impliea (M’ ,IviixB. Sco [¥] is the immediate successor of I(x1.

If %#W thew »=1¥) for some v in W. By fact Z above, [VIR+IV¥},
and hence % is its own immediate successor.
43 R+ satisfies TS.

Proof. If xniW then (%I is & transitive successocr of Ixzl.
For it was shown in 3 abhove that {(#3 is a successor of (2l and if
{(E3R+ Iyl then (B’ ,.x2F0E implies (B’ ,¥:F0B {since n and ¥ agree on
modal formulasl, which implies M+, %3208, which implies
{M+,lvi?rB, which implies (M’ ,v3sB. Thus [(x#3IR+Iivi, and so I[x] is
transitive through [%®1. If =fld ther =18 for some wilW, in this
case % is itself & successor of ® through which = is transitive.
%3 R+ is non-incestuasl. Suppoae {n3R+I{yl and InIF+Iy’3 for
fyl#iv’ 3. Since [yvi#iv’3 theres must be an A such that (¥’ ,y2E=A
ang B,y " i=-A. In this case (B ,x3=00A0-A, Since ixni is NI,

{87, myelHADSTg Y AL ~ADD0) Forr  acme sewtencs igttey O. Hernos
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(Y, yiElg and (B .,y i=l-q. 1f there were & = such that [yIR«Iz3
and [y“3IR+i{z] then it would alsc be the case that (M’ ,z)kq and
(B°,zrk-g, which is impossible.
63R+ is two-connected. Note that by the definition of R+
tx3<{R+:niy} if and only if (M’ ,x3=CnB implies (N°,y =B and alsoc
{1 {R+>nlyl if and only if (N’ ,yl)=B implies (B’ ,x%3»R0B. et Ixd
and [yl be arbitrary members af W+ and suppose (M’ ,x»E00A. Since
R+ iz generated from {wOl we know that for some m and n
{whl {R+¥mixi and {wOl{R+Iniyl.,. Hence (M wO>EémiUA. By =
applications of AS, (M’ ,wO>d=0DA. By A4 {and alsoc, if n<zZ, A3

this implies (M’ ,w0)=iInA. Hence (M’ ,yr=A and [xI(R+>21{yl.

%5 Apalysis snd_synthesis

The system AN extends K Dby the addition of four axion
schemas and one rule schema. There is a sensae in which it might
have been more enlightening to have nrore axioms and a sense in
which it might have been more enlightening tco have fewer. A
system with more axionms might provide a more finely grained
analysis of the properties that enable & relation to be viewed as
a dominoc relation: one with fewer axionms might provide a better
means of grasping the properties as a synthetic whole.

A property may be said to be associated with a collection of
axioms and rules if every normal extension of K oontaining the
axioms and closed under the rules ia complete for a class of

models satisfying the property. I+ oan be shown by standard

arguments that the right-identical suCcCesaor property is
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ssscciasted with the schema ASn. Similarliy. it can bhe shown that
TG iz asscciated with the schenal

53 DASOCDA,
and that IS is asscciated with the schemas

Dy DADCA and

ISAY ORI AC.. ACARDCIORL AL . - A2 L3R
The last three axioms are, of coursase, Cconseguences of AGn. Since
TS and IS, together with RNI, imply right-identical sucCceBS0T,
it is natural to suppose that A6n might be replaced by these more
“apecific” axions. I do not know whether this supposition is
correct.

Progress in the other direction is easier to obtain. The
formulas of AN fall into three categories! those whose truth at
a pair (x,y) depends on both x and vy, those whose truth at {st,v3
depends only on ¥y, and those whose truth at ix,y? depends on
neither % nor y. It would be guite natural to take the language
of AN to be explicitly sorted from the beginning. On this
formulation & would contain three classes of sentence lstters:
+he sort-2 letters pl,p2,..., the sort-i letters gl,qg2,... and
the sort-3 letters ri,vZ.... s {Huzberstone’s sentential
constants characterizing different sorts of relative necessity

would be sort-2 letters with fixed interpretation.) Sorted

11A propery is said to correspond to a collection of axions
and rules if the frames satisfying the property are exactliy the
frames verifying the axioms and rules. It can alsoc ke shown that
non-incestuality corresponds to RNI and that TS corrsponds to 3.
I8 and vright-identical successor do not correspond to A6n and
{3,184, Thowever, because there are Iframes lacking these

properties that validate the axioms and rules.
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formulas would be built up from the sentence igtters by finite
applications of the rules: for i=0,1,2, every sort-i sentence
ijetter is a formula; if A is a sort i formula for 0¢ig3 then A
is a sort-{i-1) formula and if A is a socrt-0 formula then UA is a
asort-0 formula; for i,3=0,1,2 if A is a3 sort-3i formula then so is
-A and if A and B are formulas of sort i and 3 then A~B are
formulas of sort max{(i,3’. & wvaluastion would assign truth-
values, subsets of [ and subsets of DD to formulas of sort
S,i,and 2. The +truth definition would be nodified in the
appropriate way, sc that it would be easy to verify that for
i=0,1,2 the +truth value of a sort-i formula Ai at a pair depends
only on the last 1 coordinates. Within this framework, A6
becomes an instance of the more general valid achemna:
TS1r  ALDOCAL
{where A1 is a sort 1 formulal. Similarliy, A4 and AS are
instances of the valid schemal
DetGy ACDTAC.

So the sorted version of the leogic of absclute necessity is
obtained by adding to K only two very simple axioms and the rule

RNI.
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