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Abstract

A notable early result of David Makinson establishes that every monotone
modal logic can be extended to LI, LV or LF, and every antitone logic, to
LN, LV or LF, where LI, LN, LV and LF are logics axiomatized, respectively,
by the schemas 2α ↔ α, 2α ↔ ¬α, 2α ↔ ⊤ and 2α ↔ ⊥. We investigate
logics that are both monotone and antitone (hereafter amphitone). There are
exactly three: LV, LF and the minimum amphitone logic AM axiomatized by
the schema 2α → 2β. These logics, along with LI, LN and a wider class of
“extensional” logics, bear close affinities to classical propositional logic. Charac-
terizing those affinities reveals differences among several accounts of equivalence
between logics. Some results about amphitone logics do not carry over when
logics are construed as consequence or generalized (“multiple-conclusion”) con-
sequence relations on languages that may lack some or all of the non-modal
connectives. We close by discussing these divergences and conditions under
which our results do carry over.

1 Introduction

Marking the fifty years that have passed since the publication of Makinson [40],
we provide some elaboration of one of its observations.1 Fix a language with some
truth-functionally complete set of (non-modal) connectives and one additional 1-
ary connective 2. Following Makinson, we mainly work with the notion of a modal
logic as a set of formulas of this language that contains all tautologies and is closed
under uniform substitution (of arbitrary formulas for sentence letters) and modus
ponens. Minimally adapting the terminology of [40], we call a modal logic L (1)
congruential, (2) monotone or (3) antitone, according as 2α → 2β ∈ L whenever

1This paper of Makinson’s has been the subject of much attention, a noteworthy recent example
being Fritz [12], which sketches some general morals of [40], as well as focusing on a specific topic –
Post completeness (understood as a property of a logic relative to some background class of logics)
– that we shall mostly not engage with here. (Exception: Remark 2.4(ii).) For an appreciation
of Makinson’s logical achievements more generally, see the ‘Outstanding Contributions to Logic’
collection, Hansson [15].
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(1) α ↔ β ∈ L, (2) α → β ∈ L, or (3) β → α ∈ L, for all formulas α, β. When
a formula α is a member of a logic L, we describe α as provable in L. (The three
conditions on modal logics can all be formulated in axiomatic terms, the closure
conditions just amounting to the admissibility of certain formula-to-formula rules.)
A consistent modal logic is one in which not every formula is provable. As in
[40], only congruential modal logics are under consideration here. Thus, in what
follows, the word ‘logic’ will always, unless otherwise indicated, mean a congruential
modal logic in a language with one 1-ary modal connective. The restriction to
congruential logics allows us to by-pass complications over the choice of non-modal
primitives noted in Makinson [41], and to link provability in modal logics to validity
in modal algebras and, in Section 2, to validity on neighborhood frames. Here a
modal algebra is simply a Boolean algebra (with the associated partial order denoted
by ≤) expanded by an additional 1-place operation (written as ∗) for interpreting 2.
Makinson’s concise presentation cannot be improved on, so we simply quote directly
(from [40], p. 252):

A modal algebra [with universe A] is said to be monotonic if for all x, y ∈ A,
x ≤ y implies ∗x ≤ ∗y, and is said to be antitonic if for all x, y ∈ A, x ≤ y
implies ∗y ≤ ∗x. Among the modal algebras there are clearly just four that can
be obtained by adding a 1-ary operation to the two-element Boolean algebra: we
shall call these the unit algebra (∗1 = 1, ∗0 = 1), the identity algebra (∗1 = 1,
∗0 = 0), the complement algebra (∗1 = 0, ∗0 = 1), and the zero algebra
(∗1 = 0, ∗1 = 0). Each of these four algebras determines a corresponding set
of formulae α such that for every homomorphism h from formulae into that
algebra, h(α) = 1.

Makinson notes that each of these four sets of formulas is a monotone or antitone
modal logic, and shows (Theorem 2 of [40]) that any consistent monotone modal
logic is a sublogic of the identity logic, the unit logic or the zero logic, and (Theorem
3 of [40]) that any consistent antitone (modal) logic is a sublogic of the complement
logic, the unit logic or the zero logic. The four logics to which Makinson draws
attention (henceforth ‘Makinson logics’) can be regarded as the logics obtained by
interpreting 2 according to one of the four 1-ary truth functions. More precisely, let
V, F, I and N abbreviate the names Verum, Falsum, Identity and Negation, of the
four 1-ary (bivalent) truth-functions. A valuation is a function assigning a truth-
value to every formula of the language. A valuation is Boolean when this is done in
accordance with the conventionally associated truth function for each connective for
which there is such a convention: v(α∧β) = T iff v(α) = v(β) = T, for all α, β, etc.;
for present purposes this amounts to saying “for each non-modal connective”. Each
of the four Makinson logics is the set of formulas verified by all Boolean valuations
that treat 2 in accord with one of the four 1-ary truth functions, the complement
logic, for example, being the set of formulas verified by Boolean valuations satisfying
v(2α) = T iff v(α) = F. For this reason, we refer to the four Makinson logics as
LV, LF, LI and LN. They are characterized, respectively, by the schemas 2α ↔ ⊤,
2α ↔ ⊥, 2α ↔ α, and 2α ↔ ¬α.

The two normal Makinson logics, LI and LV, are commonly known in the lit-
erature on normal modal logic as “the trivial logic” and “the Verum logic,” re-
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spectively, or by some variation thereon.2 One way to understand the Makinson
results, mentioned in [18], is as saying that no monotone or antitone modal logic
is contra-classical: in each such logic 2 can be given a truth-functional interpreta-
tion relative to which the logic is sound (which is of course not to say: sound and
complete). There is a striking contrast here with the larger range of congruential
modal logics. Consider, for example, the ‘demi-negation’ logic discussed in Hum-
berstone ([18] 451–456 and [25] 174–176). This is the smallest congruential logic
containing all formulas of the form 22α ↔ ¬α. Adding any of 2α ↔ ⊤, 2α ↔ ⊥,
2α ↔ α, 2α ↔ ¬α to this logic results in inconsistency. (This is tantamount to
the observation that composing any 1-ary truth-function with itself never results in
the negation truth-function.) Hence demi-negation cannot be extended to any of
the four logics Makinson singles out. A similar remark applies to logics containing
¬2⊥ ∧ 222⊥, as discussed in Humberstone ([24] and [25], pp. 174–176), and to
some historically familiar logics like S6. Indeed, as Theorem 5.2 of [12] implies, the
maximal consistent extensions of such logics are not even congruential, and thus not
among the logics to which attention is here restricted.

Makinson gives one extension result that does not involve a restriction to mono-
tone or to antitone modal logics, namely Theorem 1 of [40], according to which any
consistent congruential modal logic containing 2⊤ and ¬2⊥ is a sublogic of LI.
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This is a generalization of the fact that any consistent extension of the normal modal
logic KD is a sublogic of LI. Makinson’s proof can easily be adjusted to prove that
any congruential modal logic containing 2⊥ and ¬2⊤ is a sublogic of LN.

Here we continue to pursue the theme of Makinson’s Theorems 2 and 3, with
their focus on logics that are monotone or antitone, but consider a very restricted
set of such logics, namely those which are both monotone and antitone. We refer to
these as amphitone. In Section 2 we provide several characterizations of the class of
amphitone logics and show how they fit within Makinson’s picture. As it turns out,
there are exactly three such logics. Each of these, and the members of a broader fam-
ily to which they and the ‘Makinson four’ belong, have obvious affinities to classical
propositional logic (henceforth ‘CL’). In the case of the Makinson four, for example,
the logical behavior of 2α mirrors that of ⊤, ⊥, α and ¬α in CL. In Section 3 we
consider the nature of these affinities in more detail. In addition to shedding light on
the modal logics of interest here, the discussion may contribute the understanding
of notions like notational variance, and intertranslatability and ‘logical synonymy’,
by providing simple examples where various analyses diverge. Section 4 investi-
gates the extent to which our discussion of amphitony carries over when logics are
construed as consequence relations or generalized (multiple-conclusion) consequence
relations,4 rather than as sets of sentences, and in which the underlying language

2A normal modal logic is a monotone modal logic containing 2⊤ and, for all formulas α, β, the
formula (2α ∧ 2β) → 2(α ∧ β).

3Here ⊤ and ⊥ can be taken either as primitive truth and falsity constants, or as abbreviating
an arbitrary tautology or contradiction, respectively. In the sentence to which this note is appended
we use the phrase extension result to cover what Makinson, in the title of [40], calls ‘embedding
theorems’, since these results have nothing to do with embeddings in the sense of model theory or
with the translational embeddings of Section 3 below.

4See [52] pp. 15, 29 and surrounding text, or [22] subsections 1.12 and 1.16 for relevant definitions
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may lack some or all of the truth-functional connectives. We conclude in Section 5
with a brief summary and two open problems. The text of the paper is interspersed
with numbered ‘remarks’. The reader may skip these without missing the central
points.

2 Amphitone Logics

In this section we provide one syntactic and two semantic characterizations of the
amphitone logics. The former allows us to see how they fit within Makinson’s
extension results and the latter allow us give a complete inventory of them. Our
syntactic characterization was noted already in [27] (pp. 39f.). Since the topic is
central to our concerns here, we restate it as a theorem.

Theorem 2.1 A logic is amphitone iff it contains 2γ → 2δ for all formulas γ, δ.

Proof. Suppose S is amphitone. Because S is antitone and contains ⊥ → γ, and
δ → ⊤, it must contain both 2γ → 2⊥ and 2⊤ → 2δ. Because it is monotone
and contains ⊥ → ⊤ it must contain 2⊥ → 2⊤. Together, this implies it contains
2γ → 2δ. Conversely, if S always contains 2γ → 2δ then it certainly does so when
it contains γ → δ or δ → γ. ■

Given Makinson’s theorem, one might suspect that all amphitone logics are
sublogics of LV or LF. Being monotone, they are sublogics of LI or LF. Being
antitone, they are also sublogics of LN or LV. But, although the LI and LN are
themselves mutually inconsistent, nothing in [40] directly rules out the possibility
that both conditions could be met by some consistent sublogic of LI and LN that is
not also a sublogic of either LV or LF. Nevertheless a slight addition to Makinson’s
result does allow us to confirm the suspicion mentioned.

Theorem 2.2 No antitone logic is a sublogic of LI and no monotone logic is a
sublogic of LN.

Proof. For the first part, suppose L is antitone and a sublogic of LI. Since all logics
in our sense contain ⊥ → ⊤ as a member, and L is antitone, 2⊤ → 2⊥ is a member
of L, and, since L is a sublogic of LI, a member of LI as well. But both 2⊤ ↔ ⊤
and 2⊥ ↔ ⊥ are members of LI. Together, this implies that ⊤ → ⊥ is a member
of LI, contradicting its consistency. The second part is proved similarly. ■

Corollary 2.3 Every amphitone logic is a sublogic of LV or LF (or both).

Proof. Since amphitone logics are monotone, Makinson’s result tells us they are
sublogics of LI, LV or LF. Since they are antitone the theorem above implies they
are not sublogics of LI. ■

and further background.
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Remarks 2.4 (i) Another proof of Corollary 2.3 uses a slightly refined version of
an earlier (Kripke [32], Lemmon [37]) result that a modal logic is Halldén incom-
plete – i.e., proves some disjunction whose disjuncts share no sentence letters (alias
propositional variables), without proving either disjunct – if and only if it is the
intersection of two of its ⊆-incomparable extensions. Let us say that α and β wit-
ness Halldén incompleteness in a logic L if α and β share no sentence letters and
α ∨ β ∈ L but neither α nor β is an element of L. Examining the proofs in [32]
and [37] reveals that α and β witness Halldén incompleteness in L iff L is the inter-
section of ⊆-incomparable extensions L(α) and L(β), where these are the smallest
extensions of L containing α and β, respectively. Now suppose L is both monotone
and antitone. Consider the disjunction ¬2p ∨ 2q. Since L is amphitone, Theorem
2.1 ensures this is an element of L. If the left disjunct is provable, then (because
L is consistent and LF is Post complete) L is LF. Similarly, if the right disjunct
is provable then L is LV. If neither disjunct is provable then ¬2p and 2q witness
Halldén incompleteness, so by the (refined) Kripke–Lemmon result, L = LF ∩ LV.
In all three cases, L has either LF or LV as an extension (possibly improper), as
was to be shown.

(ii) The expression “Post complete” in (i) is intended to pick out the coatoms in
the lattice of all modal logics. These are the “∅-Post complete” logics of Fritz [12],
where it is shown (Theorem 5.2) that the four Makinson logics comprise exactly the
modal logics with this property, and we are reminded that there are uncountably
many, as Fritz puts it, C-Post complete modal logics, meaning coatoms in the lattice
of congruential modal logics, at least countably many of which are determined by
classes of neighborhood frames. (See [12] Theorem 4.2.) In Humberstone [18], esp.
note 10, a similar lattice-relativity is endorsed in connection with Post completeness,
with the distinction drawn in the case of (e.g.) congruential modal logics between
such a logic’s being Post complete qua modal logic and its being Post complete qua
congruential modal logic. ◀

Although a modal logic that is congruential, monotone or antitone may have
extensions that are not (respectively) congruential, monotone or antitone (just as a
normal modal logic can have non-normal extensions), a logic that is both monotone
and antitone only has extensions that are themselves both monotone and antitone.
This is an immediate consequence of Theorem 2.1. By contrast, the equivalence
of being monotone and containing all instances of the schema 2(α ∧ β) → 2α, for
example, holds only across the range of congruential modal logics. And, as just
noted, this class of modal logics is not itself closed under passing to extensions.5

Corollary 2.3 established that every consistent modal logic that is both monotone
and antitone is a sublogic of LV or LF (or both). In this section we ask how many

5This has the following bearing on the Kripke–Lemmon characterization of Halldén incomplete-
ness mentioned above: it is not true that a Halldén incomplete congruential, antitone, monotone or
normal modal logic is the intersection of two of its ⊆-incomparable congruential, antitone, monotone
or normal (respectively) extensions. See p. 865 of Humberstone [22] for examples and discussion,
concentrating on the normality case. The fact that being both monotone and antitone together is
an extension-preserved property means that this potential failure of the Kripke–Lemmon charac-
terization to ‘transpose’ to the current setting does not arise.
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such logics there are. The answer, it turns out, is just three: LV, LF and the minimal
amphitone logic, which for brevity we will refer to as AM in what follows.6 Given
the framework within which we are operating, it follows by Theorem 2.1 that AM is
the smallest congruential logic containing 2p → 2q. Our proof that the amphitone
logics comprise exactly these three (which appears as Corollary 2.7 below) uses a
miniaturized version of the neighborhood semantics for modal logic. Recall that a
neighborhood model is a structure ⟨W,N, V ⟩ with W a non-empty set to each of
whose elements the function N assigns a set of ‘neighborhoods’ – subsets of W –
and V a map from the sentence letters of the language to subsets of W .7 Truth of
a formula α at w ∈ W in such a model M = ⟨W,N, V ⟩ is notated as M, w |= α and
defined inductively as follows (where ∥β∥M is the set of elements of W at which β
is true in M):

• M, w |= pi if and only if w ∈ V (pi).

• M, w |= β ∧ γ if and only if M, w |= β and M, w |= γ, and similarly for
negation and other non-modal connectives.

• M, w |= 2β if and only if ∥β∥M ∈ N(w).

A formula is said to be true in M if it is true at every point in M = ⟨W,N, V ⟩,
and valid on the frame ⟨W,N⟩ of such a model if it is true in every model on the
frame. A modal logic is determined by a class of frames if its provable formulas are
exactly those valid on each frame in the class. We say a logic is determined by the
frame ⟨W,N⟩ when it is determined by {⟨W,N⟩}.

We turn to the miniature version of this apparatus. From now on, we consider
only frames ⟨W,N⟩ in which |W | = 1, because these one-element frames provide
a convenient model-theoretic analog of the two-element modal algebras from the
algebraic semantics in play in Makinson’s discussion. To within isomorphism there
are exactly four such frames, since if W = {w} then N(w) must be {W,∅}, {W}, {∅}
or ∅. The logics determined by these frames are, respectively, LV, LI, LN, and LF.
The first and last of these frames we shall call constant frames since in any model
on either frame the truth value of 2α at w is constant for varying α: either all
2-formulas are true at w or all are false at w.8 Since we are concerned here only

6This is not intended to be part of any systematic nomenclature – just a space-saving convenience
for current purposes. The reader may regard it as abbreviating either Antitone–Monotone or
AMphitone.

7A valuable early discussion is provided by Hansson and Gärdenfors [14], using slightly different
terminology – see the end of note 8. The more recent textbook treatment in Pacuit [43] may be
consulted for more extended discussion, background, and variations.

8Calling the frame ⟨W,N⟩ ‘constant’ under precisely these circumstances may seem sloppy, since
this is not a matter of N ’s being a constant function – as it must be whenever W is a singleton. To
exhibit constancy at the frame level, one would pass from the conception of neighborhood frames
as in our discussion, namely as pairs ⟨W,N⟩ with N : W −→ ℘(℘(W )) to the equivalent structures
⟨W, f⟩ with f : ℘(W ) −→ ℘(W ), as explained in Hansson and Gärdenfors [14], p. 157, in models on
which f maps the set of points verifying a formula α to the set of points verifying 2α. The frames
⟨W,N⟩ we are calling constant are those for which in the corresponding frame ⟨W, f⟩, f is a constant
function. ([14] has “U” in place of our “W” and calls neighborhood frames Scott-Montague frames.)

6



with one-element frames and models, we can drop the “w” and just write M |= 2α
without ambiguity.

Lemma 2.5 For any constant one-element model M = ⟨W,N, V ⟩ there is a substi-
tution function ¯s such that, for any formula α, M |= α iff ¯s(α) is valid on the frame
⟨W,N⟩ of M.

Proof. For each sentence letter pi, let ¯s(pi) = 2pi if M assigns the same truth
value to 2pi and pi, and let ¯s(pi) = ¬2pi otherwise. Then, for all formulas α,
M |= α iff M |= ¯s(α). (To see this note that, because ¯s(2α) = 2¯s(α) and M is
a constant model, it must be true for α of the form 2β. The general claim then
follows by a routine induction.) But ¯s(α) is fully modalized, i.e., all its sentence
letter occurrences lie within the scope of a 2, so its truth in M does not depend
on V (but only on N , and in particular on whether N(w) = {W,∅} or N(w) = ∅),
and so M |= α iff ⟨W,N⟩ |= ¯s(α), as was to be shown. ■

Theorem 2.6 Every consistent monotone and antitone modal logic is determined
by a non-empty class of constant one-element frames.

Proof. Let L+ be a modal logic extending AM, and Γ be some L+-consistent set of
formulas. Then Γ can be extended to a maximal L+-consistent set of formulas Γ⋆,
which for familiar reasons contains the consequent of any L+-provable conditional
whose antecedent it contains. Since L+ ⊇ AM, for all α, β whenever 2α ∈ Γ⋆, we
also have 2β ∈ Γ⋆. Thus Γ⋆ contains all 2-formulas or none. This Γ⋆ will be the
single element w of our one-element model M = ⟨W,N, V ⟩, with N(w) = W if all
2-formulas belong to Γ⋆ and N(w) = ∅ if no such formulas belong to Γ⋆. Finally
V (pi) = w or = ∅ depending as pi ∈ Γ⋆ or not. The usual induction on formula
complexity establishes that M verifies exactly the formulas in Γ⋆, leaving us to check
that all S+-provable formulas are valid on the frame of M. Suppose otherwise: i.e.,
that for some S+-provable α there is a model M′ = ⟨W,N, V ′⟩ on the same frame
just constructed that falsifies α. In that case M′ |= ¬α, so by Lemma 2.5 there is
a substitution function ¯s with ¯s (¬α) = ¬¯s (α) valid on ⟨W,N⟩. This implies that
⟨W,N, V ⟩ |= ¬¯s (α) and hence that ⟨W,N, V ⟩ ̸|= ¯s (α). Since α is provable in L+,
however, ¯s(α) is as well, so this contradicts the fact that ⟨W,N, V ⟩ (alias M) is a
model for L+. ■

For brevity, let us denote the frame ⟨{w}, N(w)⟩ by subscripting the letter F
with a description of N(w). So the two constant such frames in this notation appear
as F{W,∅} and F∅.

Corollary 2.7 There are exactly three consistent modal logics that are both mono-
tone and antitone, namely AM, LV, and LF.

Proof. The only nonempty classes of constant one-element frames are {F{W,∅},F∅},
{F{W,∅}} and {F∅}, which determine respectively the logics AM, LV and LF. Since
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{F{W,∅}} validates 2⊥, {F∅} validates ¬2⊥, and {F{W,∅},F∅} validates neither of
these formulas, these three logics are distinct. ■

We have used the neighborhood semantics here because it is in general currency.
We could equally have run the argument with lighter structures, tailored to the job
at hand. All that the one-element constant frames have really been doing for us
is supplying, from two sources, V and N , information about what is happening to
the non-modal and modal subformulas, respectively, of the formula to be evaluated.
The latter are treated in a particularly uniform manner. So a more economical
representation might simply consist in pairs ⟨ξ,a⟩ where ξ is a truth value, T or F
(or 1 or 0, if preferred), for the constant treatment of 2-formulas, and a is a function
assigning a truth value to each sentence letter. We could call such a pair a model,
or more explicitly a pair-model, and, where M is the pair ⟨ξ,a⟩, define truth for a
formula α in M by induction on the complexity of α as follows:

• M |= pi if and only if a(pi) = T

• M |= β ∧ γ if and only if M |= β and M |= γ, and likewise for negation and
other non-modal connectives

• M |= 2β if and only if ξ = T.

Then we could re-run the above line of thought in terms of pair-models by
isolating what was previously the frame of the model – the part that abstracts from
the evaluation of the sentence letters – which would now be simply the ξ component
of the pair ⟨ξ,a⟩. For the proof of the analog of Corollary 2.7, note that there are
three non-empty subsets of the set {T, F} of truth values-qua-‘frames’ and these
subsets, {T, F}, {T} and {F}, play the roles of {F{W,∅},F∅}, {F{W,∅}} and {F∅},
in the proof of the Corollary. The a of the pair-model constructed in the analog of
the proof of Theorem 2.6 would then be the assignment that maps to T just the
sentence letters that are members of the Γ⋆ constructed in that proof. Lemma 2.5
would say that any formula true in a pair-model ⟨ξ,a⟩ has a substitution instance
valid on the model’s ‘frame,’ ξ.

Since every amphitone logic contains AM, Corollary 2.7 provides a third proof
for Corollary 2.3: all such logics have either LV or LF as extensions. Now we can
see, however, that “all” encompasses only three.

Corollary 2.7 also facilitates another characterization of our minimal amphitone
logic, AM.

Corollary 2.8 AM = LV ∩ LF.

Proof. Because the amphitone property is characterized by closure under rules, the
amphitone logics are closed under intersection. By Corollary 2.7 LV and LF are
amphitone, and so their intersection must be as well. But only the first of these
logics contains 2⊤ and only the second contains ¬2⊤, and so their intersection must
be distinct from each. Hence that intersection must be the third of the amphitone

8



logics enumerated in Corollary 2.7, namely AM. ■

Thus, when the logic AM is construed as a set of formulas, 2 emerges as a
‘hybrid’ of (connectives for) the constant true and constant false truth functions,
i.e., as a connective whose logical behavior is the common behaviour of the two.

Corollary 2.8, together with Makinson’s two-element modal algebras and well-
known facts about product matrices,9 provides a further characterization of AM. It
is the logic determined by the four-element matrix obtained by taking the direct
product of Makinson’s unit algebra and zero algebra in that (arbitrarily selected)
order, with ⟨1U , 1Z⟩ as designated element. (The subscripts here just register the
modal algebras from which the top elements come). On this semantics, 2 is in-
terpreted as the constant function taking every element of the product algebra to
⟨1U , 0Z⟩. The set of formulas valid in the matrix is the intersection of LV and LF,
which, as we have just seen, is AM.

This coincidence of 2 being the hybrid of two truth-functional connectives and
its being the logic being determined by the direct product of the corresponding
algebras in Makinson fails when logics are construed as consequence relations.10

Take ⊢AM to be the consequence relation for which

Γ ⊢AM β iff (α1 ∧ . . . ∧ αn) → β ∈ AM for some α1, . . . , αn in Γ.

Then β is an ⊢AM-consequence of the αi in this sense just in case it is a consequence
of them whether (in all its occurrences) 2 is given a verum interpretation or given a
falsum interpretation.11 Using notation from Section 3 below, we put this by saying
that ⊢AM =⊢V ∩ ⊢F. (Indeed in the more comprehensive nomenclature described
there, ⊢AM gets called ⊢VF.) But by contrast with the set-of-formulas logics, where
the logic determined by the product matrix coincides with the intersection of the
logics determined by the factor matrices (slogan form: “products are hybrids”),
the same cannot be said for the corresponding logics as consequence relations: the
consequence relation determined by the product matrix is not the intersection of
the consequence relations determined by the factor matrices. For example, for this
‘product’ consequence relation ⊢⊗, say, we have 2α ⊢⊗ β for all α, β because 2α
never assumes the designated value ⟨1U , 1Z⟩. But p is not a consequence of 2q in
the unit algebra’s consequence relation, and therefore 2q ⊬AM p.12

9In particular: the fact that the set of formulas valid in the direct product of two matrices is
the intersection of the sets valid in the respective factor matrices. (See Corollary 2.12.2 in [22], for
instance.)

10See note 4 for background.
11Note that ⊢AM as defined here satisfies α ⊢ β iff ⊢ α → β, which means that we do not have to

distinguish being monotone in the sense that 2α → 2β is a consequence of the empty set whenever
α → β is, from being monotone in the sense that 2β is a consequence of 2α whenever β is a
consequence of α, and likewise, mutatis mutandis for antitone, congruential, and amphitone. This
of course has nothing to do with monotonicity (aka weakening) as the purely structural condition
on consequence relation that is relaxed in work on ‘non-monotonic logic’.

12Here we use the “algebra” rather than “matrix” terminology for familiarity, identifying the four
Makinson algebras with the matrices based on them with the top element (whether it is called 1
or T) as designated. The ‘hybrid’ terminology in this discussion is taken from subsection 3.24 of
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Indeed, by using a characterization due originally to  Loś and Suszko [38],13 it
can easily be shown that the intersection consequence relation, which we may call
⊢VF (see Section 3, or just read this as ⊢AM) has no characteristic matrix at all.
Let us say that a consequence relation ⊢ has the cancellation property if, whenever
Γ,

⋃
{∆i : i ∈ I} ⊢ α and, for each i ∈ I, ∆i is ⊢-consistent (i.e., there is some α

for which ∆i ̸⊢ α), and the formulas of ∆i have no sentence letters in common with
those of Γ or those of ∆j for j ̸= i or with α, then Γ ⊢ α. Then the result of  Loś and
Suszko says that a consequence relation has a characteristic matrix iff it is closed
under substitution and it has the cancellation property. (This holds even for ⊢ that,
unlike those under consideration here, are not congruential.) As one instance of the
cancellation property scheme we get – inserting the usually omitted braces and “∅”
for clarity – that if ∅, {2p} ⊢ 2q and {2p} is ⊢-consistent, then ∅ ⊢ 2q. Since
2p ⊢VF 2q and {2p} is ⊢VF-consistent and not ⊢VF 2q, ⊢VF does not satisfy the
cancellation condition, and so it has no characteristic matrix.

The situation is similar to that for Johansson’s ‘Minimal Logic’ (henceforth ML),
perhaps the most widely cited example of this phenomenon. The relevant instance
of the cancellation property in this case is that if ∅, {p,¬p} ⊢ ¬q and {p,¬p} is ⊢-
consistent, then ∅ ⊢ ¬q. Since ¬q is a consequence of {p,¬p} in ML, but (unnegated)
q is not and since ⊥ is not a theorem, it follows that ML has no characteristic matrix.
The resemblance is increased when we think of ¬α as defined by α → ⊥, with nullary
⊥ since, although 1-ary, 2 in AM is ‘essentially nullary,’ that is, the interpretation
of 2α is independent of α.

The observation that the interpretation of 2α is independent of the interpre-
tation of α suggests that in AM formulas of form 2α might be regarded as varied
representations of a single additional sentence letter in classical propositional logic
(henceforth CL). Since the addition of a new sentence letter to the countable collec-
tion of those already present would not significantly change CL, one might suspect
that AM is itself a kind of elaborately written version, or ‘notational variant’ even,
of CL. Some caution is warranted here. A formula of the form 2α can contain
other formulas as subformulas, but a sentence letter cannot. Occurrences of 2α
that might be understood in AM as occurrences of a new sentence letter are those
that are not themselves in the scope of another occurrence of 2. Together with the
sentence letters already occurring in α, these are α’s truth-functional constituents,
i.e., they are the formulas of which α is a truth-functional combination – ‘atoms
from the Boolean point of view’, as it is put in Segerberg [50], p. 51. Other as-

[22], q.v. for further information on these matters, much of which originates with Rautenberg (who
does not himself use that terminology): see [48] and subsequent papers, such as [49]. Providing
syntactic characterizations of the various hybridized truth-functions is much easier for generalized
consequence relations – as will be illustrated in Section 4 – than it is for consequence relations
proper (i.e., without empty or multiple “right-hand sides”), which are Rautenberg’s main concern.

13Initially, the result was not as widely known outside Poland as it deserved to be, and was
rediscovered many years later in Shoesmith and Smiley [51]. Furthermore,  Loś and Suszko [38]
misstated the result they proved. Both the duplication and the misstatement are chronicled in
Wójcicki [55]. Our exposition below (including the ‘cancellation’ terminology) follows [51] more
closely than [38]. Chapter 15 of [52] should be consulted for a more general cancellation condition,
not exploiting some special features of the present case.
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pects of our previous discussion also point to the close connection between AM and
CL. We noted, for example, that in AM, 2 can be regarded as a hybrid of the 2

of LV and the 2 of LF, i.e. that AM contains exactly the formulas that are true
on every Makinson valuation that assigns either T to all formulas of the form 2α
or F to all those formulas. (This appears more succinctly stated as the content
of Corollary 2.8.) This implies that α ∈ AM iff α(⊤) and α(⊥) are both classical
tautologies, where these are the results of substituting ⊤ and ⊥ for all of α’s modal
truth-functional constituents. But this is reminiscent of a familiar fact. If β(pi) is a
formula in the language of CL containing (at least) pi as a sentence letter and β(⊤)
and β(⊥) are the results of substituting ⊤ and ⊥ for pi in β(pi), then β(pi) ∈ CL iff
β(⊤) ∈ CL and β(⊥) ∈ CL. So again, subformulas of the form 2α in β are behav-
ing like occurrences of a sentence letter pi distinct from other sentence letters in β.
The connection is suggested yet again by the pair-model semantics introduced after
Corollary 2.7. A pair model’s second coordinate, a, interprets sentence letters, while
its first coordinate, ξ, interprets 2-formulas. a does its job by just assigning truth-
values to sentence letters, whereas ξ does its by assigning a single truth value to all
2-formulas. α ∈ AM iff α comes out true under every assignment a of truth-values
to sentence letters and every assignment ξ of a truth value to all the 2-formulas.
But this arrangement seems little different from one in which a alone assigns truth
values to all the sentence letters and one additional expression standing in for all
the 2αs.

The connection between modal logics and CL is of course even more obvious in the
case of the Makinson logics. As we noted in the last paragraph of the introduction,
2α behaves in LV, LI, LN and LF, exactly as ⊤, α,¬α and ⊥ behave in CL. Let us
now consider in more detail the affinities that the modal logics considered here and
their close relatives bear to CL.

3 Translations, Equivalence, Embedding

A number of proposals have been put forward to answer questions about when two
logical systems represent the same logic, or synonymous logics or when they are
notational variants. The literature on the subject is extensive and discussion is still
active.14 In this section we outline some central equivalence relations – or affinities
as we have been calling them – among logics from this literature. We then ask which
of these relations capture exactly how close the kinship is between CL and the logics
under investigation here. Our discussion is summarized in two figures. Figure 1

14See, for example, Prawitz and Malmnäs [47], Kuhn [33] pp. 67–97, Segerberg [50] pp. 43–47,
Epstein [8] pp. 375–399, Wójcicki [57] pp. 66–75, Pelletier and Urquhart [45], Kocurek [30], French
[11], Wehmeier [54]. Since the present paper was submitted, another pertinent discussion has
appeared (at least online), namely Meadows [42]; see also the references there supplied to work
by J. Wigglesworth and by J. Woods. There is an independent, but closely related, literature
on notions like “expressive power,” “definability,” and “uniform definability” that employs similar
notions for cases when both logics are interpreted by the same class of models (and, in particular,
when one is a sublogic of the other). For more on this, see Remark 3.2(i). There is also a sizeable
literature concerning analogous notions for first order theories. Some examples appear at the end
of note 30 below.
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shows six notions of affinity and the known logical connections among them. Figure
2 displays the kinds of affinity that our logics bear to CL. The literature on the
notions in focus in this section offers a wide range of terminology and a variety
of definitions sometimes formulated in apparent ignorance of, and differing subtly
from, one another. Numbered remarks in this section aim to situate our discussion
within the literature.

One notion figuring prominently in the literature goes by the name of transla-
tional equivalence. For a precise definition, tailored for present purposes to apply to
pairs L,L′ of congruential modal logics, we make use of the following four conditions
on such pairs, where s maps formulas of the language of L (over which the variable
‘α’ ranges) to formulas of the language of L′ (over which ‘γ’ ranges), and t maps
formulas of the language of L′ to those of L. (We call any such maps translations
from the one language to the other.)

1. α ∈ L only if s(α) ∈ L′,

2. γ ∈ L′ only if t(γ) ∈ L,

3. t(s(α)) ↔ α ∈ L,

4. s(t(γ)) ↔ γ ∈ L′.

Recall that L and L′ are each assumed to have a truth-functionally complete set of
connectives, so the biconditional sign in the last two clauses is either primitive or
definable in both. When conditions 1-4 are met, we call s and t translations from L
into L′ and L′ into L. L is the source of translation s and L′ is its target, and the
labels are reversed for t.

Definitions 3.1 (i) s embeds L in L′ (or ‘L can be embedded in L′ by s’) if
Condition 1 above is satisfied for all α. (Thus, re-lettering, Condition 2, taken as
holding for all γ, says that t embeds L′ in L.) We call translations s, t embeddings
of L in L′ and conversely when 1 and 2 are satisfied.

(ii) An embedding s is faithful if Condition 1 is satisfied when “only if” is strength-
ened to “if and only if.”

(iii) A pair of embeddings s and t are mutually inverse when Conditions 3 and 4
are satisfied.

(iv) L and L′ are translationally equivalent when there exist s, t satisfying Conditions
1–4 (for all formulas α, γ).

When s and t are mutually inverse, Conditions 1 and 2 imply that each embed-
ding is faithful. Thus translational equivalence is bi-directional embeddability by
mutually inverse translations or, equivalently, bi-directional faithful embeddability
by such translations.

Remarks 3.2 (i) Note that we take a translation to be any map from the formulas
of one language into those of another. The term translation is often (as in Kuhn
[33], Pelletier and Urquhart [45], Wójcicki [57]) reserved for maps satisfying some
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syntactic condition like compositionality, and sometimes (as in Kocurek [30], Ep-
stein [8]) for those satisfying some logical condition like consequence-preservation.
Our translational equivalence (or the analogous notion for consequence relations:
see further Remark 3.4), which follows Kocurek [30], is strong similarity in Kuhn
[33] and syntactic equivalence in Segerberg [50] and French [11]. Most attempts
in the literature to characterize such notions as “same logic,” “synonymous logic,”
“notational variant,” involve translational equivalence under some restricted class of
translations (like those discussed below); Kocurek ([30] pp. 295–296) usefully warns
against presuming that talk of one logic being a notational variant of another should
be susceptible to a single formal explication, since it amounts to saying that the dif-
ferences between the one and the other are insignificant – something that could well
depend on the particular topic under investigation. (Nevertheless, [30] makes clear
that Kocurek is favorably disposed toward one candidate explication, which he calls
‘schematic translational equivalence.’) Two apparent exceptions to the claim that
the relevant literature emphasizes relations of translational equivalence under an ap-
propriately restricted class of translations are French [11] and Wehmeier [54]. French
argues for an additional constraint of “external equivalence” – that the appropriate
translational equivalence be preserved under the addition of new operators with the
same properties to both logics. Wehmeier, who compares a wide range of equivalence
relations, advocates understanding them as relations between interpreted languages
rather than logics. That is, the approach assumes a shared set of models in which
the common vocabulary of the languages compared is interpreted similarly. This is
often a natural condition to impose on the discussion, and so the ‘common mod-
els’ approach is widespread: see for example Yang [59] and references there cited,
as well as numerous papers by Jie Fan, for example [9]. But since this approach
is potentially restrictive, we take a more neutral line here, not assuming any such
common model-theoretic background. In any case, translational equivalence rela-
tions, appropriately restricted, do not disappear in these works. When French’s
vague phrase “same properties” is understood in syntactic terms and translations
are definitional in the sense given in Definition 3.3(iii) below, then, as French in-
dicates ([11], p. 329), translational equivalence already implies external equivalence.
And Wehmeier’s equivalence relations on interpreted languages induce correspond-
ing translational equivalence relations on the logics they determine.

(ii) The reference to consequence-preservation in (i) is a reminder that most of the
the work cited there treats translations as embedding one consequence relation in
another, rather than one logic in the set-of-formulas sense in another, as in Defini-
tions 3.1 above. Conditions 1–4 have obvious analogs for this more general case –
3, for example, becoming: t(s(α)) ⊣⊢L α. The reader preferring the consequence
relation formulation is invited to understand the present discussion in those terms
(as the discussion was in the closing paragraphs of Section 2 above). α1, . . . , αn ⊢L β
amounts to the L-provability of (α1∧. . .∧αn) → β. (Thus when L is a normal modal
logic, it is the local rather than the global consequence relation associated with L
that is at issue.) One could also consider in place of consequence relations, general-
ized – alias multiple-conclusion – consequence relations, as the sources and targets
of embeddings, though we shall not do so here. The question of whether to under-
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stand affinities between logics as conditions on sets of theorems or on equivalence
relations is not always innocent, as will be noted in Remark 3.4 below. ◀

One should not presume that whether logics L and L′ are translationally equiv-
alent, or whether L is embeddable or faithfully embeddable in L′, have anything
do with their logical strength i.e., the extent of their provable formulas or sequents.
Classical propositional logic, the modal logic S5, and the trivial modal logic (alias
KT! or Makinson’s identity logic, LI, as we are calling it) are of strictly increasing
logical strength, but the first and last are translationally equivalent. Many well-
known translations, like those from classical to intuitionistic logic, faithfully embed
stronger logics into weaker ones. Some find this phenomenon paradoxical. (For
example, Béziau in [3].) The air of paradox dissipates when we realize that stronger
logics typically make fewer logical distinctions among formulas, so that it is nat-
ural for the logical organization of the stronger logic to be a part of that of the
weaker. (On the need for the word “typically” here, see [21].) Indeed, Pelletier and
Urquhart ([45], p. 283) leave as an open problem the question of whether any weaker
logic could be faithfully embedded in a stronger one. If one allows logics in different
languages, this question has an easy affirmative answer. The classical propositional
logic of the conditional, for example is faithfully embedded into the full classical
propositional logic by the identity translation, and classical propositional logic is in
turn faithfully embedded into any modal logic by the same translation. For that
reason, where we say L is faithfully embeddable in L′, Kuhn ([33], p. 75) says L is
a fragment of L′. When the logics are both from the same language, the question
is not so easy, but the answer is still affirmative, as shown in [20].

What gives translational equivalence some plausibility as a characterization of
“the same logic” for a wide range of logics including those of interest here, is that
one can show that, within this range, that two logics are translationally equiva-
lent iff their Lindenbaum algebras are order-isomorphic.15 Thus if we take logically
equivalent formulas to be “saying the same thing” and we take a logic to be a way of
organizing what can be said in terms of logical strength, then translationally equiv-
alent logics provide the same organization. This same result, however, shows the
limitation of that characterizaton. The order relation of the Lindenbaum algebra of
a modal logic is just that characterized by its Boolean algebra reduct. Since there is
(up to isomorphism) only one countable atomless Boolean algebra, virtually all log-
ics in which the non-modal connectives get their usual (classical) interpretation will
be translationally equivalent, unless the notion of translation is suitably restricted.16

Stricter conditions on translations than those introduced in Definitions 3.1 are
obtained by attending to the degree to which they respect the internal structure of
the formulas they translate. All but the last two of Definitions 3.3 below can be
found in more or less the present terminology, in French’s extensive taxonomy of

15See Kuhn [33] p. 69, Kocurek [30] p. 290.
16This was observed independently in Kuhn and Weatherson [35], Kocurek [30], and Paseau [44].

(Kocurek also discusses related work on this issue by E. Jeřábek.) It holds, for example, for system
where, like all those considered here, every formula has countably many logical equivalents. As
Kocurek observes, it can fail when the set logical equivalents for some formula in L and the set of
logical equivalents of some formula in L′ differ in cardinality.
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translations.17 Defs. 3.3(v) and 3.3(vi), adapted from the notion of being compo-
sitional in Kocurek [30] (meaning what we are calling ‘broadly compositional’) are
included here for ease of comparison with Defs. 3.3(ii) − (iv), though they play an
active role in our discussion only later.

Definitions 3.3 (i) A translation t from one language to another is variable-fixed
if for each sentence letter pi, t(pi) = pi;

(ii) t is narrowly compositional if for each n-ary primitive connective # in the
source language there is a formula α(p1, . . . , pn) in the target language containing
occurrences of no sentence letters other than p1, . . . , pn, such that when α1, . . . , αn

map to t(α1), . . . , t(αn) then #(α1, . . . , αn) maps to α(t(α1), . . . , t(αn));

(iii) A translation t is definitional if t is both variable-fixed and narrowly composi-
tional.

(iv) Logics that are translationally equivalent via definitional translations, we call
definitionally equivalent.

(v) t is broadly compositional if for every primitive n-ary connective # of the source
language there is an n-ary template β(q1, . . . , qn), i.e., a formula in the language
obtained by adding to the target language n new sentence letters q1, . . . , qn to
those already in that language, such that, whenever α1, . . . , αn are mapped to
t(α1), . . . , t(αn), #(α1, . . . , αn) is mapped to β(t(α1), . . . , t(αn)).

(vi) Logics that are translationally equivalent by broadly compositional translations,
we call compositionally equivalent.

For example, for t broadly compositional we may have t(pi) = p2i and t(2α) =
¬(p0∨t(α)), for t narrowly compositional we may have t(pi) = p2i and t(2α) = ¬t(α)
and for t definitional we may have t(pi) = pi and t(2α) = ¬t(α). To distinguish the
templates of Defs. 3.3(v) from those of note 17, we shall call the current versions,
in which only the new sentence letters are exhibited, templates+. ‘Old’ sentence
letters may still occur in the formulas represented by such templates+, but they are
not substituted for in the course of applying the translation.18 Notice that defi-
nitional translation, narrowly compositional translation, compositional translation
and translation are increasing classes, and so definitional equivalence, compositional
equivalence and translational equivalence are increasingly general equivalence rela-
tions.

17See [10] Chapter II. The definitional translations (of Def. 3.3(iii)) are labeled simple translations
in Kuhn [33]. The analog of the (narrow) compositionality condition of Def. 3.3(ii) in French [10]
requires that what we may call the template formula α(p1, . . . , pn) contain occurrences of all the
displayed sentence letters. This difference is not significant for the logics we consider here, but
our formulation allows us count as definitional a translation s such that s(2α) = ⊥, rather than
requiring us to rewrite this as, say, s(2α) = s(α) ∧ ¬s(α). The reader should beware that both
labels are sometimes used to pick out slightly different classes of translations by other authors. By
taking a more concrete view, according to which the formulas of the object language have to be
taken sequences of symbols (rather than elements of the absolutely free algebra generated by the
sentence letters, with the primitive connectives as fundamental operations), Wehmeier [54] is able
to consider substantially tighter restrictions.

18The present templates+ are the contexts of Humberstone [23], p. 50f., and Yang [59], Def. 3.3,
the latter supplying additional references.
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Remark 3.4 It is well known that these stronger equivalence relations, applied (as
here) to logics as sets of formulas, may diverge from the analogous relations among
logics as consequence relations (as described in Remark 3.2. For example, while
there is a definitional translation noted by Gödel embedding CL faithfully in intu-
itionistic propositional logic (henceforth IL), there is no such translation faithfully
embedding ⊢CL in ⊢IL. This was shown in Tokarz and Wójcicki [53] (p. 123f.; the
authors’ own discussion is couched in terms of consequence operations rather than
consequence relations). In fact, the latter claim remains correct even on deletion of
the word ‘faithfully’ (Humberstone [18], p. 466ff.). There is of course a definitional
translation – the identity translation – embedding ⊢IL in ⊢CL, but there is no such
translation effecting an embedding faithfully in this direction either. (See Theo-
rem 3.1 in Humberstone [19].) French’s remark ([11], p. 329) that “Wójcicki proves
that there can be no faithful definitional embedding of intuitionistic logic (⊢IL) into
classical logic (⊢CL)” is slightly misleading. It is actually the converse direction of
embedding that Theorem 1.8.9 of Wójcicki [57] (recapitulating the reasoning of [53])
bears on. Wójcicki was well aware of both directions, however, as his reference to
Wojtylak [58] on p. 75 of [57] shows. Theorem 21(i) of [58] says, in the present termi-
nology, that if there is a faithful definitional translation embedding an intermediate
consequence relation ⊢ (meaning that ⊢IL⊆⊢⊆⊢CL) in an intermediate consequence
relation ⊢′, then ⊢=⊢′. For the present application, take ⊢,⊢′ as ⊢CL,⊢IL. (The
relevant result was also cited in Paragraph 67.5 of Wójcicki [56], together with the
mysterious reference “Wojtylak [1979b],” which is absent from [56]’s bibliography
and evidently intended to be a reference to [58].) The observation that no defi-
nitional translation faithfully embeds ⊢IL in ⊢CL is strengthened in Theorem 24 of
Kocurek [30] to the result that there is not even a broadly compositional translation
that does this. (In fact Kocurek’s result is stronger still, formulated in terms of
what he calls schematic translations – not defined here, though alluded to Remark
3.2(i) – of which broadly compositional translations are a special case.) ◀

Since our interest here concerns the affinity of various modal logics to CL we
impose the additional constraint that all translations are what we might call 2-
translations, i.e., that they respect the non-modal connectives, in the sense that,
for example, t(α ∧ β) = t(α) ∧ t(β).19 In surveying the logics bearing some affinity
to CL, for example, we would not want to count both AM and a variant in which
‘∧’ indicated disjunction and ‘∨’ indicated conjunction. In what follows, therefore,
we assume that all translations meet that condition, taking it, in particular as an
unstated part of Definitions 3.3.20

Each of the four modal logics considered Section 1 (following Makinson [40]), LV,
LI, LN and LF, is definitionally equivalent to CL. Translations establishing this are
si, ti, for 1 ≤ i ≤ 4, where each si maps sentence letters to themselves and respects

19When translations are definitional our 2-translations become the 2-definitional translations of
Humberstone [25], p. 266.

20It is possible that this assumption, or at least an assumption that t shows the nonmodal
connectives the lesser respect of making, for example, t(α ∧ β) and t(α) ∧ t(β) logically equivalent,
can be derived from the assumption that L is a modal logic in our sense and L′ is CL, but we have
been unable to establish whether this is so.
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the non-modal connectives and s1(2γ) = ⊤, s2(2γ) = s2(γ), s3(2γ) = ¬s3(γ),
s4(2γ)=⊥, and t1(γ) = t2(γ) = t3(γ) = t4(γ) = γ. Indeed, as the following
theorem indicates, the Makinson four are essentially the only modal logics having
this property.

Theorem 3.5 Suppose L is a modal logic in a language with one 1-ary modal con-
nective 2. Then L is definitionally equivalent to CL iff L is LV, LI, LN or LF.

Proof. The argument for the ‘if’ direction was given above. For the converse, suppose
L is definitionally equivalent to CL via translations s and t. Then, since t and s
are mutually inverse, 2p0 ↔ t(s(2p0)) ∈ L. Since the only connectives present in
the language of CL are non-modal and t respects the non-modal connectives and
is variable-fixed, t must be the identity function. So 2p0 ↔ s(2p0) ∈ L. Since s
is definitional, 2p0 ↔ β(p0) ∈ L for some β(p0) in the language of CL whose only
sentence letter is p0. But then L must be one of the Makinson four. ■

Translations that might corroborate the suggestion beginning this section that
AM is somehow tantamount to CL are not definitional. They comprise maps s and
t from the language of AM to that of CL and back such that

• For all i ≥ 0, s(pi) = pi+1,

• s(α ∧ β) = s(α) ∧ s(β), and similarly for negation and other non-modal con-
nectives,

• s(2α) = p0, and

• t(p0) = 2p0,

• for all i ≥ 1, t(pi) = pi−1,

• t(γ ∧ δ) = t(γ)∧ t(δ), and similarly for negation and other non-modal connec-
tives.

The idea of using the first sentence letter in an official enumeration of them
to play a distinguished role in translations and then shunting all the sentence let-
ters of the source logic forward so that this causes no interference is familiar from
translating from Johansson’s minimal logic (with ⊥ primitive, to be translated by
the sentence letter singled out) into positive logic (i.e., intuitionistic logic in the
{∧,∨,→}-fragment of intuitionistic logic).21 In the case of minimal logic, there may
be some inclination to resist the notion that ⊥ doesn’t merely behave like a sentence
letter but actually is a (strangely written) sentence letter. This unease is reduced
in the case of AM by the fact that, syntactically at least, 2 is a 1-ary connective. It
should not be so surprising to learn that 2α is a kind of formula whose truth value
is independent of α (and not just independent of α’s truth-value).

21Alternatively, instead of being singled out once and for all, the sentence letter is taken to be
one not occurring in a given α when defining the ⊥-removing translation of α, as in Theorem C of
Prawitz and Malmnäs [47].
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The translations s and t above are neither variable-fixed nor narrowly com-
positional. They do, however, respect the nonmodal connectives (the background
condition on all the translations in play in Definitions 3.3) and count as broadly com-
positional in the sense of Def. 3.3(v). (The template+ formula β(q1) corresponding
to 2 here is just p0, which contains zero occurrences of q1. The fact that q1, . . . , qn
need not all appear in the n-ary template+ β(q1, . . . , qn) is a mere convenience.
If it were required that they all appear and, say qi were missing, we could replace
β(q1, . . . , qn) by its equivalent β(q1, . . . , qn)∧(qi → qi). In general, a broadly compo-
sitional translation replaces all the new “template” letters qi in β – these correspond
to the parameters introduced in Pelletier and Urquhart, [45], p. 263 – by formulas
of the target language, so these translations really do take formulas of the source
language to formulas of the target language. Any of the sentence letters pi, in β’s
that were already in the target language, however, remain. Thus, a broadly compo-
sitional translation, even if it is variable-fixed, can map #(p1, . . . , pn) to a formula
containing sentence letters other than p1, . . . , pn, as s maps 2p1 to p0 here.22

Our next result uses the notion of compositional equivalence introduced in Def-
inition 3.3(vi):

Theorem 3.6 AM is compositionally equivalent to CL.

Proof. Let s and t be the translations above. For any formula γ in the language
of CL, s(t(γ)) = γ, and so condition 4 on translational equivalence is satisfied. For
any formula α in the language of AM, t(s(α)) is the result of replacing certain
subformula occurrences in α of the form 2β (in particular, those not contained in
any larger such occurrences) with 2p0. Since AM is congruential, it is closed under
replacement of equivalents. Since contains all instances of 2α ↔ 2β, therefore, it
contains t(s(α)) ↔ α, and so condition 3 is also satisfied. To check conditions 1 and
2 we make a detour through the semantics. It is convenient to write an assignment
of truth values to sentence letters as a sequence ⟨a(p0),a(p1), . . . ⟩. (Notation here
is as in the discussion following Corollary 2.7 above: a for assignments, “ξ” with or
without subscripts, for truth-values.) Then we can associate with each pair-model
M = ⟨ξ, ⟨ξ1, ξ2, . . .⟩⟩ the truth value assignment aM = ⟨ξ, ξ1, ξ2, . . .⟩ and with each
truth-value assignment a = ⟨ξ1, ξ2, . . .⟩ the pair-model M(a) = ⟨ξ1, ⟨ξ2, . . .⟩⟩. Note
that the transitions from M to a and back are just a matter of deleting and adding
the inner angle brackets, so aM(a) = a and M(aM) = M. A routine induction
establishes that, for all formulas α in the language of AM, M |= α iff aM |= s(α)
and for all formulas γ in the language of CL, a |= γ iff M(a) |= t(γ). To show that
condition 1 is satisfied suppose α /∈ CL. Then there is some truth-value assignment
a such that a ̸|= α. By the induction above, M(a) ̸|= s(γ). Since all models verify
the formulas in AM, this implies s(γ) /∈ AM, as required. Condition 2 is proved by
a similar argument. ■

So we see that AM and the four Makinson logics are all compositionally equiva-

22The compositional translations of Def. 3.5 in Yang [59] are what we are calling broadly com-
positional translations.
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lent to CL, whereas the latter four logics, and only those, meet the stronger condition
of being definitionally equivalent to it.

It is natural to ask whether AM and the Makinson four are the only modal logics
compositionally equivalent to CL. We approach this question indirectly. We show
that there is a natural class of fifteen logics including these four, that bear to CL
a weaker affinity relation that is of interest in its own right. As it turns out, these
fifteen are the only modal logics that relate to CL in this way, and so any modal
logics translationally equivalent to CL must be among them. In addition to AM
we identify five others that are so equivalent. The question of whether any of the
remaining four are translationally equivalent to CL is left open.

The class of logics in question were identified as the extensional logics in Humber-
stone ([16], [17]) and reidentified in a somewhat different way as the prime modal
logics in Zolin ([60]). We briefly introduce this class of logics,23 emphasizing a
particular example for illustration. A modal logic is extensional if it contains all
instances of (α ↔ β) → (2α → 2β). Note that this is a “horizontal” correlate
of the congruentiality condition, and extensional logics are therefore congruential.
Each logic of the Makinson four, in which 2 can be interpreted by a particular 1-ary
truth-function, is clearly extensional. But so also are all intersections of these logics.
Consider, for example, the logic LVI = LV ∩LI. A formula is valid in this logic if it
is verified by any Boolean valuation that treats 2 consistently with either the Verum
or the Identity truth functions. Thus 2 (in the current presentation of this idea) is a
hybrid of the two corresponding connectives, sharing the logical properties of both,
just as in AM it was a hybrid of connectives corresponding to the Verum and Falsum
truth-functions. Indeed, the extensional modal logics are precisely intersections of
logics among the Makinson four.24

Our notation for the extensional logics subsumes the earlier notation for the
Makinson four. The symbol ‘L’ subcripted by a word on the boldface alphabet
V, F, I or N (the letters selected in that order) denotes a logic in which 2 has
the properties shared by the corresponding connectives. In other words the valid
formulas are those verified by any Boolean valuation that treats 2 consistently with
any of the indicated truth functions. A Boolean valuation that interprets 2 as
V, F, I or N may be called a Makinson valuation, and so we may say that every
extensional logic is determined by an appropriate class of Makinson valuations. In
this notation AM would be called LVF. If we take V, F, I and N as one-letter words
then the result of subscripting L by one of these letters again denotes one of the
Makinson four, and we have LVF = LV ∩ LF, LFIN = LF ∩ LI ∩ LN, etc. The first
of these examples is a version of Corollary 2.8.25 26 In introducing his prime logics,

23Our exposition recapitulates Humberstone’s extensionality (rather than Zolin’s primeness),
tailored to classically-based modal logic. For the less parochial general notion of extensionality (in
sentence position), see note 35 below, and the text to which it is appended.

24The discussion in, for example, 3.21 of [22] can be readily adapted to show this.
25The one-letter labels were avoided in [16] and [17], where the words themselves denote logics,

because the notation would then be ambiguous between logic and truth-function.
26Of course the first disjunct here could be written simply as 2p, but writing it with biconditional

disjuncts illustrates how we select one disjunct for each of the truth-functions being hybridized. Note
that any of these disjunctions with more than one disjunct witnesses Halldén incompleteness, and
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Zolin ([60]) provides alternative axiomatizations. Since these will be useful in what
follows we reproduce them here. Listed below are the extensional logics (minus the
Makinson four) written in our notation and the characteristic axioms given in [60],
p. 866.

LVF 2p ↔ 2⊥
LVI 2p ↔ (p ∨2⊥)
LVN 2p ↔ (¬p ∨2⊤)
LFI 2p ↔ (p ∧2⊤)
LFN 2p ↔ (¬p ∧2⊥)
LIN 2p ↔ (p ↔ 2⊤)
LVFI 2p ↔ (2⊥ ∨ (2⊤ ∧ p))
LVFN 2p ↔ (2⊤ ∨ (2⊥ ∧ ¬p))
LVIN 2p ↔ ((p ↔ 2⊤) ∨ (¬p ↔ 2⊥))
LFIN 2p ↔ ((p ↔ 2⊤) ∧ (¬p ↔ 2⊥))
LVFIN 2p ↔ ((p ∧2⊤) ∨ (¬p ∧2⊥))

Each axiom in the list contains only a single sentence letter. Our axiom schema
2α → 2β for AM ( = LVF), for example, is replaced by 2p ↔ 2⊥.27 Furthermore
each provides a logical equivalent to 2p that is a truth-functional combination of p
and the “modal constants” 2⊤ and 2⊥.

The extensional logic LVI that we choose as our example is a well-known normal
modal logic, called KTc in essentially Brian Chellas’s nomenclature (as in Humber-
stone [25]). It makes an appearance in two recent writings. Kracht [31] (p. 320),
cites it as the smallest Fregean normal modal logic – where the term ‘Fregean’ is
adapted from the usage illustrated in Czelakowski and Pigozzi [5] for consequence
relations, to the case of logics as sets of formulas. Kocurek ([30] Proposition 20)
proves that it is a sublogic of any normal modal logic compositionally embeddable
into CL. Our Theorem 3.8 below shows that, as long as translations preserve non-
modal connectives, it is itself so embeddable, and thus Kocurek’s Proposition 20
establishes that it is the smallest normal logic to do so. Our Theorems 3.9 and 3.10
show that there are exactly 15 modal logics compositionally embeddable into CL.
Of these only three, LVI, LV and LI, are normal. As might be expected, all three
are extensions of LVI. (Some caution is warranted here, since we are operating with
logics as sets of formulas, and Kocurek, with logics as consequence relations.)

We now introduce the weaker affinity notion alluded to above. (Our terminology
follows [30].)

Definitions 3.7 Logics L and L′ are

(i) intertranslatable if L and L′ are bi-directionally faithfully embeddable;

that the disjunction with all four disjuncts yields the same modal logic as does a representative
instance – distinct sentence letters replacing distinct schematic letters – of the schema used to
define (sentence position) extensionality here. This gives the logic of the ‘completely generic’ 1-ary
extensional connective, as it is put in [16].

27Note that 2p ↔ 2⊤ would do equally well here, and that, on either choice, we have here
another example of the phenomenon investigated in [27].
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(ii)definitionally intertranslatable if L and L′ are intertranslatable by a pair of def-
initional translations;

(iii) compositionally intertranslatable if L and L′ are intertranslatable by a pair of
broadly compositional translations.

Relations among the various affinities between logics spelled out in Definitions
3.1(iv), 3.3(iv, vi) and 3.7 are shown in Figure 1. Solid arrows indicate that the
target is strictly weaker than the source. (Bracketed numbers above the arrows are
bibliographical references to proofs of that strictness, i.e., to proofs that the arrows
go only in the direction indicated. See note 30 for details.) The dotted arrow labeled
by a question mark indicates that the target is weaker than the source, but we don’t
know whether it is strictly weaker.

translationally equivalent
intertranslatable

compositionally equivalent

compositionally intertranslatable

definitionally equivalent

definitionally intertranslatable[46]

[30]

?

Figure 1: Affinities Between Logics

We now show that every extensional logic is translationally intertranslatable with
CL– looking at our example LVI in detail and sketching the argument for several
others.

Theorem 3.8 LVI and CL are compositionally intertranslatable.

Proof. The identity translation t(γ) = γ provides a faithful embedding of CL into any
consistent modal logic L, for the following reason. If γ ∈ CL, then t(γ) ∈ L because
modal logics include all classical tautologies. If γ /∈ CL then, for some substitution
¯s replacing each sentence letter by ⊤ or by ⊥, ¬¯s(γ) ∈ CL, so ¬¯s(γ) ∈ L. The
consistency of L thus implies that ¯s(γ) /∈ L. Hence, since modal logics are closed
under uniform substitution, γ /∈ L. Taking L as LVI, then, to complete the proof
it suffices to find a broadly compositional faithful embedding from LVI into CL
that respects the non-modal connectives. Let s be the (broadly compositional)
translation with the following inductive definition:

s(pi) = pi+1,

s(¬α) = ¬s(α),

s(α ∧ β) = s(α) ∧ s(β), and similarly for ∨ and →,

s(2α) = p0 ∨ s(α).
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Since s respects the non-modal connectives, it maps tautologies to tautologies and
satisfies the condition that s(β) a tautological consequence of tautologies s(α1), . . . , s(αn)
implies s(β) also a tautology. Furthermore s maps the characteristic Zolin axiom
for LVI to (p0 ∨ s(p)) ↔ (s(p) ∨ (p0 ∨ ⊥)), which is a tautology. This establishes
that s is an embedding of the kind required.

It remains only to show that s is faithful. Suppose α /∈ LVI. Then there is some
Makinson valuation u ∈ VV ∪ VI such that u(α) = F. Suppose first that u ∈ VV.
Let a be the truth value assignment that assigns T to p0 and, for i ≥ 1, u(pi−1)
to pi. Then by formula induction it follows that, for all formulas β, u(β) = T iff
a |= s(β), and so, in particular, a ̸|= s(α). Now suppose that u /∈ Vv. Then u ∈ VI.
Let a be the same truth value assignment as before except that it now assigns F to
p0. Then again it follows by induction that u(β) = T iff a |= s(β). For the 2 case
here, we have the following chain of equivalences: u(2γ) = T iff u(γ) = T (because
u ∈ VVI) iff a |= s(γ) (by induction hypothesis) iff a |= p0 ∨ s(γ) (since a(p0) = F
iff a |= s(2γ). So again in this case we have a ̸|= s(α). ■

Similar arguments apply to every intersection of one or more of the Makinson
logics, so that Theorem 3.8 can be strengthened to the following result:

Theorem 3.9 Every extensional modal logic is compositionally intertranslatable
with CL.

To give some indication here of the kind of reasoning involved, it will help to consider
what is going on in the proof of Theorem 3.8. The broadly compositional translation
s in play had treated 2 by means of the template+ α = α(q1) = p0 ∨ q1. We wanted
2 to behave as a hybrid of (connectives for) V and I. But any Boolean valuation
v for which v(p0) = T satisfies v(α) = T regardless of v(q1). So we could interpret
2 as V on such valuations. If v is any other valuation, then v(p0) = F, and so
v(α) = v(q). In that case 2 could be interpreted as I on v. For brevity, let us
abbreviate all this to:

When p0 7→ T , 2 7→ V and when p0 7→ F, 2 7→ I.

The argument above handles the case of LVI. LVF, alias AM, is dealt with in
Theorem 3.6 (giving the stronger compositional equivalence result). There remain
four twofold hybrids to address (LVN, LFI, LFN and LIN), as well as four threefold
hybrids (LVFI, LVFN, LVIN, LFIN) and the one fourfold case (LVFIN). Templates+

for the twofold cases can be recovered (if necessary) from Figure 3 in [26], reproduced
here as Figure 4 in an Appendix to the present paper. Find the relevant hybridized
pair in that table, note the corresponding ‘Porte compound’, and replace nullary
constant Ω by p0 and the variable p by q1 (which we shall write simply as “q” for
this discussion). The pairs are listed in that table as ordered pairs, but we can select
either order for a particular hybrid. For example, the Ω compounds listed for ⟨I,F⟩
and ⟨F, I⟩ are respectively Ω ∧ p and ¬Ω ∧ p, and we can take α(q) as p0 ∧ q or as
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¬p0 ∧ q, obtaining equally workable templates+ for present purposes.28 For future
reference, we display the templates+ obtained from the Porte compounds, with the
ones from those in our canonical order V, F, I, N listed first:

• For LVN take α(q) = p0 ∨ ¬q or α(q) = ¬p0 ∨ ¬q

• For LFI take α(q) = ¬p0 ∧ q or α(q) = p0 ∧ q

• For LFN take α(q) = ¬p0 ∧ ¬q or α(q) = p0 ∧ ¬q

• For LIN take α(q) = p0 ↔ q or α(q) = ¬p0 ↔ q

The remaining hybrids require templates+ with two sentence letters, and so to
accommodate this we set s(pi) = pi+2. Using the abbreviated notation introduced
above, among the options, we have:29

• For LVFI, take α(q) = p0 ∧ (p1 ∨ q). When p0, p1 7→ T, 2 7→ V; when p0 7→ T
and p1 7→ F, 2 7→ I; when p0 7→ F, 2 7→ F.

• For LVFN, take α(q) = p0 ∨ ¬(p1 ∨ q). When p0 7→ T, 2 7→ V; when p0 7→ F
and p1 7→ T, 2 7→ F; when p0, p1 7→ F, 2 7→ N.

• For LVIN, take α(q) = p0 ∨ (p1 ↔ q). When p0 7→ T, 2 7→ V; when p0 7→ F
and p1 7→ T, 2 7→ I; when p0, p1 7→ F, 2 7→ N.

• For LFIN, take α(q) = p0 ∧ (p1 ↔ q). When p0, p1 7→ T, 2 7→ I; when p0 7→ T
and p1 7→ F, 2 7→ N; when p0 7→ F, 2 7→ F.

• For LVFIN, take α(q) = p0 ↔ (p1 ∨ q). When p0, p1 7→ T, 2 7→ V; when
p0 7→ T and p1 7→ F, 2 7→ I; p0 7→ F and p1 7→ T, 2 7→ F; when p0, p1 7→ F,
2 7→ N.

Thus, for example, the α(q) of this last case serves as an incarnation of the com-
pletely generic one-place extensional connective, mentioned in note 26.

The theorem below states that the extensional logics are the only modal logics
that (within our framework) are compositionally intertranslatable with CL.

28To understand the insignificance of order here it is useful to consider the characterization of
logics that we are calling extensional by  Lukasiewicz in [39].  Lukasiewicz noted that, for example,
what we call LIF, is determined by a product matrix of the truth tables for the identity and falsum
connectives, i.e., a matrix in which the new connective yields the value ⟨x′, y′⟩ when applied to
a formula taking value ⟨x, y⟩ iff x′ = x and y′ = F. Since the logic determined by the product
of two matrices is the intersection of the logics determined by the factor matrices, the same logic
would be determined by the product matrix of falsum and identity. Nevertheless, as  Lukasiewicz
observed, in languages with both connectives, the order is not insignificant. Using IF and FI for
the two connectives, we have: IFφ → FIφ not valid (in the sense of always taking value ⟨T,T⟩)
while IFφ → IFφ is valid and, conversely, (IFφ ∨ FIφ) ↔ φ valid while, (IFφ ∨ IFφ) ↔ φ is not.
For more on this see [26].

29There are in general several non-equivalent options for each case. For example in place of the
first one listed here, α(q) = p0∧(p1∨q1), we could equally well have cited the result of interchanging
conjunction and disjunction in this formula.
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Theorem 3.10 Suppose a modal logic L is faithfully embedded into CL by a broadly
compositional translation that respects the non-modal connectives. Then L is exten-
sional.

Proof. Let t be a translation of the sort supposed. Then t(2p0) = β(t(p0)) and
t(2p1) = β(t(p1)), where β(q1) is a formula in the language of CL supplemented by
a sentence letter q1 and, for i = 0, 1, β(t(pi)) is the result of replacing all (zero or
more) occurrences of q1 in β(q1) by t(pi). It follows that (t(p0) ↔ t(p1)) → t(2p1) ↔
t(2p1)) ∈ CL. Since t respects ↔ and →, t((p0 ↔ p1) → (2p0 ↔ 2p1)) ∈ CL. Since
t is faithful, (p0 ↔ p1) → (2p0 ↔ 2p1) ∈ L, which implies that L is extensional, as
was to be shown. ■

We asked above whether AM and the Makinson four are the only logics that
are compositionally equivalent to CL. This led to the observation that all the ex-
tensional logics and only are at least compositionally intertranslatable with CL. But
the translations witnessing this are not mutually inverse. For example, if s and
t are the translations from LVI to CL and back, then t(s(2p0)) is p0 ∨ p1, which
is not LVI-equivalent to 2p0. It is known that intertranslatability does not imply
translational equivalence and that definitional intertranslatability does not imply
definitional equivalence.30 We don’t know the answer to the corresponding question
for compositional intertranslatability and compositional equivalence. But at least
in this case there are other broadly compositional translations between the exten-
sional logics and CL that are mutually inverse and so the hybrid extensional logics
are compositionally equivalent to CL. The following strengthening of Theorem 3.8
illustrates this.

Theorem 3.11 LVI is compositionally equivalent to CL.

To prove this, the following result giving sufficient conditions for compositional
equivalence will be convenient.31

Lemma 3.12 If s faithfully embeds L into L′ and s(t(β)) ↔ β ∈ L′ then L is
compositionally equivalent to L′ via s, t.

30See Kocurek [30], Proposition 6, for the first fact and Pelletier and Urquhart [46], Theorem 2.1,
for the second. The result that Pelletier and Urquhart use to establish that their example logics are
not equivalent (viz., Theorem 4.3 of [45]) requires that translations be what we might call “loosely
definitional”. Connectives are translated via templates but a sentence letter pi may be translated
by an arbitrary formula in which no sentence letters other than pi occur. Thus Theorem 2.1 does
not establish that either the top or middle arrow of Figure 1 is one-directional. The translations
used for the example logics are definitional, however, and they are 2-translations, so the proof
of Theorem 2.1 does establish that the bottom arrow is one-directional. Analogous notions and
results have been reported for first order theories. See, for example, Corcoran [4], Andréka et
al. [1] and Barrett and Halvorson [2], [36], [28], and chapter 7 of [13]. Not surprisingly, parallels
between notions of definitional equivalence (intertranslatability, etc.), as applied to logics, and their
namesakes as applied to theories have found their way into recent debate over ‘exceptionalism about
logic’; see Dewar [6], and references there cited.

31This is Proposition 2.2.4 in Kocurek [29] p. 64, adapted to the present framework.
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Proof. Suppose L is faithfully embedded into L′ via s, and s(t(β)) ↔ β ∈ L′.
To prove that t embeds L′ into L note that β ∈ L′ iff s(t(β)) ∈ L′, and, since s
is a faithful embedding, this happens iff t(β) ∈ L. It remains only to prove that
t(s(α)) ↔ α ∈ L. By the hypothesis of the lemma, s(t(s(α))) ↔ s(α) ∈ L′. Since
s respects the non-modal connectives s(t(s(α)) ↔ α) ∈ L′. Since s is faithful,
t(s(α)) ↔ α ∈ L as required. ■

Proof of theorem. Let s be as in the proof of Theorem 3.8 and let t be the (broadly
compositional) translation in the other direction given by:

t(p0) = 2⊥,

t(pi) = pi−1 for i > 0,

t(¬α) = ¬t(α),

t(α ∧ β) = t(α) ∧ t(β), and similarly for ∨ and →.

We know from the proof of Theorem 3.8 that s is a faithful embedding of LVI into
CL. By the previous lemma, then, it is sufficient to prove that s(t(α)) ↔ α ∈ CL. We
do so by induction on the construction of α. Because s and t respect the non-modal
connectives and CL satisfies replacement of equivalents, we need only consider the
base case. If i = 0 then s(t(pi)) = s(2⊥) = (p0 ∨⊥), and so s(t(pi)) ↔ pi ∈ LVI. If
i > 0 then s(t(pi)) = pi and s(t(pi)) ↔ pi follows directly. ■

To adapt the reasoning used in the proof of Theorem 3.11 to the extensional
logics characterizing the remaining “binary” hybrids, LVN, LFI, LFN and LIN, one
can take s to be an appropriate translation from those described in the argument
for Theorem 3.9 and adjust the value of t(p0) so that s(t(p0)) ↔ p0 ∈ CL is provable.
(For the remaining sentence letters we just let t decrease subscripts by one so that
s(t(pi)) = pi.)

Theorem 3.13 LVN, LFI, LFN and LIN, are each compositionally equivalent to
CL.

Proof. Following the strategy just outlined, for LVN let s(2α) = p0 ∨ ¬s(α) and
t(p0) = 2⊤; for LFI let s(2α) = p0 ∧ α and t(p0) = 2⊤; for LFN let s(2α) =
p0 ∧ ¬s(α) and t(p0) = 2⊥; for LIN let s(2α) = p0 ↔ s(α) and t(p0) = 2⊤. In the
first case s(t(p0)) = p0 ∨ ¬⊤; in the second cases(t(p0)) = p0 ∧ ⊤; in the third case
s(t(p0)) = p0 ∨ ¬⊤; in the fourth case s(t(p0)) = p0 ↔ ⊤. In each case, s(t(p0) is
tautologically equivalent to p0, as desired. ■

One might think that this strategy could be extended to cover the logics for the
three- and four-place hybrids. One would look for values for both t(p0) and t(p1) that
would make it possible to show that both s(t(p0)) ↔ p0 and s(t(p1)) ↔ p1 were in CL.
For example, in the case of LVFI it would be natural to take s(2α) = p0∧(p1∨s(α))
and t(p0) = 2⊤. We would then have s(t(p0)) = p0∧(p1∨⊤), which is equivalent to
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p0 as required. But there appears to be no value that we could assign to t(p1) that
would satisfy s(t(p1)) ↔ p1 ∈ CL, and We have been unable to determine whether
or not the logics for the three- and four-place hybrids are compositionally equivalent
to CL.

The results of this section are summarized in Figure 2. The smaller rectangles
represent individual logics, the Makinson logics comprising the adjoining rectangles
in the lower portion of the diagram, and the binary intersections of these shown
above them. The larger nested rectangles containing these represent classes of logics.
Affinity to CL is represented by shading: darker shading indicating closer affinity.
The asterisk in the legend indicates that the question of whether all extensional
logics are compositionally equivalent to CL is not settled here. Thus the logics in
each rectangle bear at least the affinity to CL indicated in the legend and, with the
possible exception of those extensional logics that are neither Makinson logics nor
binary intersections thereof, they bear no closer affinity.32

Extensional logics

Modal logics

Definitionally equivalent to CL

Compositionally equivalent to CL

Compositionally intertranslatable with CL*

Translationally equivalent to CL

LV LF LI LN

LVF LVI LVN LFI LFN LIN

1

Figure 2: Affinities Between Modal Logics and CL

4 Hybridizing the Unit and Zero Operators in a More
General Setting

In previous sections, modal logics were understood as as extensions of classical
propositional logic in a language expanded by the addition of the 1-ary connective
2. It emerged in Section 2 that such logics are characterized by the presence of the

32To be more precise, affinities here are equivalence relations between logics, each associated with
a particular condition. One affinity is closer than another if its associated condition is logically
stronger. One should not assume that affinities like those appearing in Figure 1 are always linearly
ordered by closeness, and much less so when these are supplemented by forms of translational
isomorphism like that mentioned in note 40. However, the four affinities listed in the legend of
Figure 2 are linearly ordered by closeness when restricted to the class of modal logics considered
here, and the first three of these are generally so ordered.
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theorem 2α → 2β, and that are exactly three of them. The weakest, which can be
axiomatized by that formula alone, we called AM. The other two, which we called
LV and LF, are just the unit and zero logics from Makinson’s well-known result
about the extensions of modal logics, and AM is their intersection. In section 3 it
was seen that AM is just one member of the family of 16 extensional logics, each
an intersection of one or more of Makinson’s four logics, and all of which bear close
affinities to classical propositional logic. In this section we wish to focus attention
more closely on just 2 itself without any presumptions as to how it might interact
with other connectives. For that purpose the most convenient logical framework is
not one seeing logics as sets of formulas meeting appropriate conditions, or even
as consequence relations, but as generalized (or ‘multiple-conclusion’) consequence
relations.33 There are natural analogs of both the amphitone property and the
extensional logics in these more general settings, and the analogs of LVI again have
the amphitone property. Unlike LVI, itself, however, they are not many-valued
logics, nor are they the smallest logics with the amphitone property. Furthermore,
as will be seen, their amphitone status is not so special: every extensional logic in
the more general settings is amphitone. We conclude the section by asking about
conditions under which the results of the previous section do carry over to the more
general frameworks.

To maintain the parallel with our previous framework, we restrict attention to
congruential relations, which we now take to mean that α ⊣⊢ β only if 2α ⊣⊢ 2β,
whether ⊢ is a consequence relation or a generalized one. For convenience we will
often refer to consequence relations and generalized consequence relations as crs and
gcrs, respectively, and for clarity we will use the notation ‘⊩’ in place of ‘⊢’ for gcrs.
Since we take 2 as the sole connective in the language, the idea of 2α’s provably
implying 2β is, in the absence of any implicational connective, represented by its
being the case that 2α ⊩ 2β. A cr is monotone if α ⊢ β implies 2α ⊢ 2β; antitone
if α ⊢ β implies 2β ⊢ 2α, and amphitone if both monotone and antitone. For gcrs
the notions are understood similarly.

A treatment of gcrs in the spare language of interest to us can be retrieved from
Humberstone [17] and in particular we can extract from the lattice of Figure 1 in
that work (p. 347) the sublattice relevant to our concerns.34 The original lattice
shows the inclusion relations among all 26 gcrs ⊩ on a language with 2 as its sole
connective where 2 is extensional according to ⊩ in the sense that for all α, β, we
have α, β,2α ⊩ 2β and 2α ⊩ 2β, α, β. These conditions require, respectively,
that 2 treats all truths alike and that 2 treats all falsehoods alike.35 Together,

33See note 4 for background.
34In the original diagram (and discussion), ⊢ is written rather than ⊩, schematic letters are

A,B, . . . rather than α, β, and 2 appears as #.
35That is, every valuation v that is consistent with ⊩ in the sense that it never assigns T to

every formula in Γ and F to every formula in ∆ when Γ ⊩ ∆ satisfies the conditions (i) that if
v(α) = v(β) =T then v(2α) = v(2β) and (ii) that if v(α) = v(β) = F then v(2α) = v(2β).
Thus on every valuation consistent with ⊩, 2 is associated in the obvious sense with a 1-ary truth-
function – though not necessarily the same truth-function for different ⊩-consistent valuations,
thereby distinguishing extensionality (in sentence position) from truth-functionality, as it was put
in [16]; a discussion removing an element of unclarity in this contrast is provided by Chapter 3 of
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they amount to a formulation of extensionality as defined here, now purged of any
dependence on connectives other than 2 itself, and hence of any assumptions as to
the logical behavior of such connectives. We may now check that all extensional gcrs
are congruential.36 Suppose ⊩ is extensional and α ⊩ β and β ⊩ α. Extensionality
implies α, β,2α ⊩ 2β. Since α ⊩ β, we have α,2α ⊩ 2β. Similarly, 2α ⊩ 2β, α, β
and β ⊩ α imply that 2α ⊩ 2β, α. Together, this implies 2α ⊩ 2β, and so ⊩ is
indeed congruential. Note also that the extensionality conditions are satisfied by
any ⊩ for which we have 2α ⊩ 2β unrestrictedly. We depict the relevant sublattice
in Figure 3.

∅⊩∅

⊩β α ⊩

⊩2β α ⊩β 2α⊩

α ⊩2β 2α⊩β

2α ⊩ 2β

Figure 3: Some Extensional Gcrs

A node in Figure 3 represents the smallest gcr satisfying the condition written
beside that node (for all formulas α, β); the empty set is indicated by a gap except
in the case of the top node, which represents the inconsistent gcr for which we have
Γ ⊢ ∆ for all sets Γ,∆ of formulas. One node is lower than another if the logic
represented by the first is a sublogic (a subrelation, that is) of that represented by
the second. Thus there are nine logics in this restricted language, all extending

[22]. There the truth-functionality of a connective is taken to be relative to a class of valuations,
but the extensionality of a connective is relative to a cr or to a gcr, and is a purely syntactic matter.
So a semantic analog of extensionality is to be provided – “pseudo-truth-functionality” – as well as
a syntactic analog of truth-functionality, in the terminology “is fully determined (according to ⊢
or ⊩),” so that like can be compared with like. The details of the comparisons depend on whether
it is crs or gcrs that are at issue, however, and for consequence relations it does not coincide
with extensionality in the sense of Czelakowski and Pigozzi [5], p. 56, which counts the familiar
(primitive or defined) connectives of intuitionistic logic as extensional according to ⊢IL, although
they do not treat falsehoods ( = non-truths: only bivalent valuations are at issue) in the same way.
(See Observation 3.23.2 in [22] for this, and more generally, §3.3.) [5]’s extensionality corresponds
to the weak extensionality of [22].

36This fact can perhaps be appreciated more easily by considering the semantic gloss on the
extensionality conditions given above. For α ⊩ β and β ⊩ α together indicate that α and β have
the same truth value on any ⊩-consistent valuation, and so the two extensionality conditions imply
that 2α ⊩ 2β.
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the the logic LVF from Section 3, now conceived of as a gcr and denoted by ⊩VF,
sitting at the bottom of the lattice. (Boldface letters as before.) As in Section 3,
the label reflects the idea that this logic treats 2 as a hybrid of the constant true
and constant false connectives. The central node represents a logic in which every
formula is a consequence of every other, and, since gcrs are closed under Weakening
(i.e., Γ ⊩ ∆ implies Γ′ ⊩ ∆′ for Γ ⊆ Γ′ and ∆ ⊆ ∆′), every non-empty set is a
consequence of every non-empty set. The definition of generalized consequence does
not require that it follow from this that the empty set implies or is implied by,
any set, and so this logic has the three distinct extensions shown. If we regard the
logic represented by the central node and the three logics properly extending it as
trivial37 all the logics extending that represented by the central node as trivial or
essentially the same as that logic, then the VF-logic still has four non-trivial proper
extensions. Descriptions of these logics (in fact, all 26 logics) in terms of valuational
semantics can be found in [17].38 As with the formula logic LVF (alias AM) of the
preceding section, ⊩VF treats 2 as a hybrid of (i.e., something possessing precisely
the shared unconditional ⊩-properties of) 2 as a constant true and 2 as a constant
false connective. That is ⊩VF =⊩V ∩ ⊩F. This is represented in Figure 3 by the fact
that the meet (intersection) of the leftmost and rightmost logics in the diagram is
the bottom logic there. It is also the meet of the two logics on the level immediately
above it, which are in the picture because we include gcrs with which the valuations
that verify and falsify all formulas are consistent (in the sense of note 35). (These
valuations are called vT and vF in [17].) They would be excluded if attention were
restricted to what are assertive logics in Segerberg [50], p. 40, renaming the earlier
‘regular’ logics of Kuhn [33].39

In the current setting, the combination of being monotone with being antitone
amounts to ⊩’s satisfying the condition that for any α, β if α ⊩ β then 2α ⊩ 2β
and 2β ⊩ 2α – a condition clearly satisfied by ⊩VF. All the gcrs extending ⊩VF

(and so appearing in Figure 3 if they do not also expand the language) are both
monotone and antitone in this sense. The converse, however, no longer obtains.

To illustrate this, let us begin by considering gcrs ⊩ (crs ⊢) with the property
that α ⊩ β implies β ⊩ α (resp., α ⊢ β implies β ⊢ α) for all α, β in the language
of ⊩ (resp., of ⊢). We may call such relations pseudo-symmetric–their restriction to
singleton sets is symmetric. Any such ⊩ or ⊢ which is either monotone or antitone
is evidently amphitone.

Example 4.1 Let ⊩N be the least gcr on the language with sole connective (1-
ary) 2, to satisfy both α,2α ⊩ and ⊩ α,2α for all α. This is easily seen to be

37These are analogs for gcrs, of consequence relations sometimes called inconsistent and almost
inconsistent. See, for example, [48].

38The discussion in [17], understanding connectives as individuated by their logical powers, speaks
of Figure 3 as charting nine different 1-ary connectives – or, rather, Figure 1 of that paper as charting
26 such connectives – though some might regard this as rather unnatural description in the trivial
cases for which the logic is characterized by a condition not mentioning the connective itself.

39The ‘regular’ terminology clashed with an unrelated usage in modal logic for a certain class
of logics between the class of all monotone logics and all normal modal logics, Kuhn [33] in fact
uses the term ‘consequence relations’ rather than ‘logics’, and means by it what are here called
generalized consequence relations.
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antitone and pseudo-symmetric. It is Makinson’s ‘complement logic’ transposed to
the current setting. Since α ⊩N β implies 2β ⊩N 2α, ⊩N is congruential. ⊩N

is pseudo-symmetric in virtue of being symmetric, something that can’t happen in
the case of consequence relations. Accordingly, ⊩N is congruential and amphitone,
despite not satisfying the VF condition 2α ⊩ 2β. ◀

Similar remarks apply to ⊩I–the least such gcr to satisfy both α ⊩ 2α and
2α ⊩ α (which is the gcr version of LI). Since ⊩V and ⊩F are amphitone and
the amphitone property for gcrs is preserved under intersections, this implies that,
when logics are construed as gcrs, every extensional logic in the language with no
connectives other than 2 is amphitone. There is an even simpler example worth
considering, that of the smallest gcr on the language with sole connective 2. In
this case Γ ⊩ ∆ iff Γ ∩ ∆ ̸= ∅, immediately rendering ⊩ both congruential and
amphitone since α ⊩ β just when α and β are the same formula, in which case so
are 2α and 2β. This last example illustrates another way in which the amphitone
property on logics as gcrs differs from that on logics as sets of formulas. In the latter
case it is preserved when the logic is extended, not so in the former: we can have
amphitone ⊩ and ⊩+⊇⊩, with ⊩+ not amphitone. Variants of these examples arise
also for the corresponding consequence relations. If ⊢N is taken as the restriction
of ⊢CL to the language in which negation is the sole connective (which could be
rewritten as 2 for complete parity with the foregoing, if desired) then we have a
pseudo-symmetric consequence relation which, being antitone, is also amphitone,
without extending ⊢VF. And corresponding to the simple minimal case with gcrs,
if we take the consequence relation on the 2-only language, in which formulas are
consequences of precisely the sets of which they are elements, and we again have
the α ⊢ β ⇒ α = β situation.40 So, although the amphitone property coincides
with the provability of 2α → 2β when logics are construed as sets of formulas, it
does not coincide with the corresponding condition 2α ⊢ 2β (characterizing ⊢VF)
for consequence relations.

We can better understand the divergence between logics as sets of formulas and
logics as crs or gcrs with regard to the amphitone property by recalling the proof

40The situation is quite different when, as in earlier sections, logics are construed as sets of
formulas in a language with, say, ¬,∧,∨,→ and ↔ interpreted classically. In this case the minimal
logic is Makinson’s L0 from [41] (with ¬,∧,∨,→ and ↔ as primitives), or Kuhn’s ‘operator logic’
from [34] (restricted to a single 1-ary operator), i.e., it is the set of formulas true under every Boolean
valuation, which is the set of substitution instances of tautologies. This logic is not congruential
(much less amphitone), containing, for example, formulas of the form (α ∨ β) ↔ (β ∨ α) but not
those of the form 2(α ∨ β) → 2(β ∨ α). Although this logic is outside the class considered in
this paper, it may be interesting to note its relation to CL. The most obvious translations from
L0 to CL would divide the sentence letters into two countable subsets (say pi with i odd and pi
with i even), map the sentence letters of L0 1-1 to the former, the 2-governed truth-functional
constituents (‘Boolean atoms’) of L0 1-1 to the latter, and the non-modal combinations of these
constituents to the corresponding non-modal combinations of their translations. (Note the contrast
here with AM, where every truth-functional constituent was mapped to the same sentence letter.)
This is a faithful embedding that is not either narrowly or broadly compositional. It is, however,
1-1 and onto, and so L0 and CL are, in Kocurek’s terminology, isomorphic. (See [30], Definition
2.11.) As Kocurek shows, if L and L′ are isomorphic via t, then they are translationally equivalent
via t and t−1.
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of Theorem 2.1. There we appealed to the presence in our language of ⊤ and ⊥ (as
either 0-ary connectives or formula abbreviations) as well as →. But the identity
of those particular expressions (or at least the first two of them) was not essential
to the proof. The same argument would go through as long as any formulas α and
β are both uplinked (i.e., α → γ and β → γ are theorems for some formula γ)
and downlinked (i.e., δ → α and δ → β are theorems for some formula δ). Thus,
if we extend the notion of a congruential logic to encompass any logics in which
occurrences of α can be replaced by β whenever α ↔ β is provable (this having
been put in terms of the “replacement of equivalents” in the course of the proof
of Theorem 3.11), then the Lindenbaum algebra of a congruential logic, formulas’
being uplinked (downlinked) corresponds to their equivalence classes’ having an
upper bound (resp. a lower bound).41 Since δ → α and β → γ are in the logic,
the antitone property implies that 2α → 2γ and 2δ → 2β are as well. But a
familiar property of the conditional ensures that δ → γ is a theorem and so the
monotone property implies 2δ → 2γ is as well. Indeed, an even simpler version of
the argument will go through as long as any two formulas are directly linked, i.e.,
they are either uplinked or downlinked. If, for example α and β are uplinked by
γ, then the monotone property ensures that 2α → 2γ and the antitone property
ensures that 2γ → 2β. If α and β are downlinked the argument is similar. These
considerations show that Theorem 2.1 would obtain in other logics, even those in
languages lacking some of the connectives of CL. The notion of linkage defined above
and the definitions of the monotone and antitone properties require the presence of
→, and the proof uses the principle that α → γ is an element of the logic if α → β
and β → γ are, but no other connectives or logical principles are required. Even in a
logic as weak as implicational BCK,42 every pair of formulas is directly linked, since
both are uplinked by any provable formula (e.g., p → p). In the present context,
however, where there may be no connectives other than 2, things are somewhat
different. The condition that α → β is a theorem is now replaced by α ⊢ β or α ⊩ β,
and the notions of linkage are revised accordingly. In this case there may be pairs of
formulas with no direct links, and, as we have seen, the analog of Theorem 2.1 may
fail. Indeed, taking the consequence relation case, if we have either of ⊢ α → β and
α ⊢ β without the other, then we may have to live with a corresponding bifurcation
between two linkage notions. For example in the pure implicational BCI logic43

we again have p → p provable. Any associated consequence relation ⊢ therefore
satisfies α ⊢ p → p for all α, and so any two formulas are ‘⊢-uplinked’. But now

41Note the contrast with two somewhat similarly defined notions in [22], p. 1319ff. and elsewhere,
such as the references given at the top of p. 1336 there: formulas α, β are there defined to be head-
linked if for some formulas α0, β0, γ, they are respectively equivalent to α0 → γ and β0 → γ, and
tail-linked if for some formulas α0, β0, δ, they are respectively equivalent to δ → α0 and δ → β0.
(The linking formula γ or δ appears here at the ‘head’ end or ‘tail’ end of the “→”.) Head-linked
formulas in IL exhibit strikingly CL-like behavior; for example α and β are head-linked in IL iff they
enjoy there the Peircean equivalences (1): of α with (α → β) → α, and (2): of β with (β → α) → β.

42See Došen [7], which usefully describes the history of this logic and its weaker relative BCI
mentioned below.

43See Došen [7] for background; for further information see the index entries in [22] under ‘BCI
logic’ (and ‘BCK logic)’.
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we no longer have ⊢ α → (p → p), which fails when α is not itself provable in BCI
(and sometimes when it is). From this, it is not hard to see that p and q are not
‘→-uplinked’ in BCI.

Setting aside such →-dependent notions of linkage, it would be interesting to see
if some variation on the theme of ‘every pair of formulas is directly linked’ might
turn out to be a necessary as well as a sufficient condition for any simultaneously
monotone and antitone 2 to be constant in a cr or gcr with no assumptions about
the underlying language. For ease of exposition, let’s consider gcrs. One plausible
variation would be this: define being linked according to ⊩ as the ancestral of the
relation of being directly linked according to ⊩. The arguments above show that
for any formulas α and β, α directly linked to β according to ⊩ implies 2α ⊩ 2β.
It follows that every pair of formulas being linked is sufficient for 2α ⊩ 2β to
characterize the amphitone property. Now suppose ⊩ is amphitone and, for all α
and β, 2α ⊩ 2β. Does it follow that every pair of formulas is linked according to
⊩? More generally, does 2α ⊩ 2β imply that α and β are linked?

5 Conclusion

David Makinson ([40]) draws attention to the four modal logics determined by modal
algebras obtained by adding a 1-ary operator ∗ to the Boolean algebra with elements
in {0, 1}: LV (for which ∗0 = ∗1 = 1), LF (for which ∗0 = ∗1 = 0), LI (for which
∗x = x), and LN (for which ∗x is the complement of x). He shows that every
monotone modal logic is a sublogic of LV, LF or LI, and that every antitone modal
logic is a sublogic of LV, LF or LN. Here we extend Makinson’s results to show
that every amphitone modal logic (i.e., every modal logic that is both monotone
and antitone) is a sublogic of either LF or LI. We show further there are exactly
three such logics: LF, LI and the minimal amphitone logic, AM, that can be axiom-
atized by adding the axiom 2α → 2β to a standard axiomatization of the minimal
congruential modal logic E. Makinson’s four logics, and only those, are definition-
ally equivalent (in a sense described here) to the classical propositional logic CL.
Intersections of any two of these logics bear to CL the slightly weaker relation of
compositional equivalence. Intersections of three or more of Makinson’s logics, bear
to CL the still weaker relation of compositional intertranslatability. Furthermore
Makinson logics and their (binary, ternary or quaternary) intersections are the only
modal logics to do so. Most of our discussion, like Makinson’s, is conducted within
a framework that regards modal logics as sets of formulas in a language equipped
with a truth-functionally complete set of nonmodal connectives. In a more general
framework, where a logic is regarded as a substitution-invariant gcr, ⊩, between sets
of formulas and sets of formulas and no assumptions are made about the nonmodal
connectives present, a natural analog of AM is ⊩VF, represented by the bottom node
in Figure 3. ⊩VF is the smallest gcr relation satisfying 2α ⊩ 2β (or, more pedanti-
cally, {2α}⊩{2β}) for all α, β. This gcr and all its extensions are both monotone
and antitone. In this setting, however, there are other amphitone logics. Indeed (as
Example 4.1 illustrates) the amphitone property is no longer preserved when the
logic extended, and (as the last case of that example illustrates) ⊩VF is not even
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a smallest amphitone gcr. For this reason we do not follow the example set by the
notation “⊢AM” from Section 2. (See the text to which note 11 is appended.) This
divergence occurs not so much because of the contrast between consequence rela-
tions and generalized consequence relation as because the lack of additional logical
vocabulary in the present setting. If a logic in this framework has the property that
every pair of formulas is directly linked, in the sense that α ⊩ β implies that either
α ⊩ γ and β ⊩ γ for some γ, or γ ⊩ α and γ ⊩ β for some γ, then the original
findings are restored: being amphitone coincides with extending ⊩VF.

In the course of our discussion two questions were raised that remain open:

• Suppose ⊩ is amphitone and ⊩⊇⊩VF. Does it follow that every two formulas
are linked in ⊩ (where being linked is the ancestral of being directly linked)?

• Are any logics other than the Makinson four and their binary intersections
compositionally equivalent to CL? In view of Theorem 3.10, only the five re-
maining extensional logics are live candidates. A negative answer would settle
the question of whether compositional intertranslatability implies composi-
tional equivalence.
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[28] Mohamed Khaled, G. Székely, K. Lefever and M. Friend, ‘Distances Between
Formal Theories’, The Review of Symbolic Logic, 13 (2020), 633–654.

[29] Alex Kocurek, What Can You Say? Measuring the Expressive Power of Lan-
guages, PhD dissertation, University of California, Berkeley 2018.

[30] Alex Kocurek, ‘On the Concept of a Notational Variant’, 284–298 in A. Baltag,
J. Seligman, and T. Yamada (eds.), Logic, Rationality, and Interaction: 6th
International Workshop (LORI 2017), Springer 2017.

[31] Marcus Kracht, The Mathematics of Language, Mouton de Gruyter, Berlin
2003.

[32] Saul A. Kripke, ‘Semantical Analysis of Modal Logic II. Non-Normal Modal
Propositional Calculi’, pp. 206–220 in J. W. Addison, L. Henkin, and A. Tarski
(eds.), The Theory of Models, North-Holland, Amsterdam 1965.

[33] Steven Kuhn, Many-sorted Modal Logics, Philosophical Studies series, Philo-
sophical Society and the Department of Philosophy, University of Uppsala,
Uppsala 1976.

[34] Steven Kuhn, ‘Logical Expressions, Constants, and Operator Logic’, The Jour-
nal of Philosophy 78 (1981), 487–499.

[35] Steven Kuhn and Brian Weatherson, ’Notes on Some Ideas in Lloyd Hum-
berstone’s Philosophical Applications of Modal Logic’, Australasian Journal of
Logic 15 (2018), 1–18.
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[56] Ryszard Wójcicki, Lectures on Propositional Calculi, Ossolineum (Polish
Academy of Sciences), Wroc law, 1984.
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Appendix

For the reader’s convenience in connection with the discussion after Theorem 3.9,
we make available as Figure 4, appearing as Figure 3 in [26] (with the more explicit
caption “Porte–Vakarelov Constant-induced Operators”). As explained there, to
keep the layout compact, overlining is used for negation, (connectives for) the con-
stant true and constant false binary truth-functions are written as t○ and f○, with
the the projections to the first and second coordinate as ① and ② , respectively.
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Ω ∧ p ⟨I,F⟩ Ω ∨ p ⟨V, I⟩
Ω ∧ p ⟨N,F⟩ Ω ∨ p ⟨V,N⟩
Ω ∧ p ⟨F, I⟩ Ω ∨ p ⟨I,V⟩
Ω ∧ p ⟨F,N⟩ Ω ∨ p ⟨N,V⟩

Ω ↔ p ⟨I,N⟩ Ω ① p ⟨V,F⟩
Ω ↔ p ⟨N, I⟩ Ω ① p ⟨F,V⟩
Ω t○ p ⟨V,V⟩ Ω ② p ⟨I, I⟩
Ω f○ p ⟨F,F⟩ Ω ② p ⟨N,N⟩

Figure 4: Porte–style Constant-induced Operators
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